Concreting			
General mormation			
Course name	Basics of Molecular Simulations	ECTS Credits	4
		Semester	S
Aims			
Introduction to the principles of computational simulations of			
biomolecular objects from point of view of complex IT			
application in practice			
apprication in practice.			
and the second			
VLA 13			
CP 20 S			
1 - Salla Sal			
A A A A A A A A A A A A A A A A A A A			
Content			
Essential structural characteristics of biomolecules. Foldamers -			
the definition and its importance. Computational predictions of			
folding as optimization problem Propagators - algorithms for			
the time evolution and their use in molecular dynamics. Monte			
Carlo methods - algorithms and parallelization. Computational			
carlo methods - argontinns and paranenzation. Computational			
chancinges of biomolecular simulations - description of			
chemical reactions, free energy evaluation, protein folding.			
Simulations of rare events. Computational complexity, less			
traditional optimization techniques and heuristics.			
Go Go			
Assessment Methods and Criteria			
Written test and elaboration of referate. Exam.			
0.21			
1	2021		
Grading Scale (in %):	10	- 10	
A: 91% - 100%			
B: 81% - 90%			
D: 61% - 70%			
E: 51% - 60%			
F: 0% - 50%			

Grading System:

The University recognises the following six degrees for the evaluation of the study results:

- a) A excellent (excellent results) (numerical value 1)
- b) B very good (above average results) (1.5)
- c) C good (average results) (2)
- d) D satisfactory (acceptable results) (2.5)
- e) E sufficient (results meet the minimum criteria) (3)
- f) FX -failed (requires further work) (4)

Bibliography

- Schlick, Tamar. Molecular Modeling and Simulation. 1st ed. Springer, 2002.

- Allen, M. P., and D. J. Tildesley. Computer Simulation of Liquids. Oxford University Press, USA, 1989.

