General Information			
Course name	Computational Physics II	ECTS Credits	4
		Semester	W

Aims

To teach students to use computer as a tool of modeling of physical reality focusing on design of simulation projects to help to solve physical problems.

Content

- Basic and advanced methods of Monte Carlo simulations of lattice spin systems.
 Types of local perturbation algorithms (Metropolis, Heat-bath, Glauber) and their performance.
- 2. Critical slowing-down of the relaxation process nonlocal cluster methods of Monte Carlo simulation. Swendsen-Wang, Wolff and other advanced algorithms.
- 3. Statistical analysis of Monte Carlo data. Initial non-equilibrium period and transition to the equilibrium state.
- 4. Calculation of mean values and statistical errors in the equilibrium state. The adverse impact of temporal autocorrelation on their estimation.
- 5. Statistical errors, autocorrelation times and their numerical estimation. Binning and Jackknife analyses.
- 6. Histogram data processing. Reweighting by the simple histogram and multihistogram methods.
- 7. Universality and finite-size scaling analysis. Universality classes and calculation of critical exponents.
- 8. Determination of the type of phase transition by finite-size scaling. The phase transitions of the first and second order. Binder cumulant.
- 9. Monte Carlo simulations of stochastic processes. A one-dimensional discrete random walk. Transition to a continuous random walk. Diffusion equation.
- 10. Basic quantum Monte Carlo simulations. Determination of the ground state of a quantum system based on the concept of random walks.
- 11. Random processes in the financial analysis. Geometric Brownian motion. Monte Carlo simulations of stock prices. Black-Scholes analysis.
- 12. Basic methods of molecular dynamics. Lennard-Jones potential. Verlet and velocity-Verlet discretization.
- 13. The implementation of the method of molecular dynamics. Periodic boundary conditions and other relevant conditions in the simulation of the finite system.

Assessment Methods and Criteria

Prerequisites: Numerical Methods; Statistical Mechanics. Continuous evaluation is based on students' activity in the classroom and work on assignments. The course ends with final oral examination.

Grading Scale (in %):

A: 91% - 100%

B: 81% - 90%

C: 71% - 80%

D: 61% - 70%

E: 51% - 60%

F: 0% - 50%

Grading System:

The University recognises the following six degrees for the evaluation of the study results:

- a) A excellent (excellent results) (numerical value 1)
- b) B very good (above average results) (1.5)
- c) C good (average results) (2)
- d) D satisfactory (acceptable results) (2.5)
- e) E sufficient (results meet the minimum criteria) (3)
- f) FX –failed (requires further work) (4)

Bibliography

- 1. D.P. Landau, K. Binder: A Guide to Monte Carlo Simulations in Statistical Physics,
- Cambridge University Press, 2000.
- 2. B.A. Berg: Introduction to Markov Chain Monte Carlo Simulations and Their Statistical
- Analysis, http://www.worldscibooks.com/etextbook/5904/5904_intro.pdf
- 3. W. Janke: Lectures on Ising model, http://www.physik.uni-

leipzig.de/~janke/Ising Lectures Lviv.html