General Information			
Course name	Phase Transitions and	ECTS	4
	Critical Phenomena	Credits	
		Semester	S
Aims			
To acquaint students with based problems of the phase transitions and critical phenomena.			
Content			
1. Introduction to thermodynamic. Thermodynamic potentials. Maxwell relations.			
2. Response function for a magnetic system: specific heats and susceptibilities.			
4. Phase equilibrium and phase transitions. Examples of phase transitions			
5. Classification of phase transitions. Clausius-Clapeyron equation.			
6. Landau's contribution to phase transitions. Order parameter and symmetry breaking.			
7. Definition of critical indices. Relations between critical indices.			
8. Models of magnetic phase transitions: Heisenberg and Ising model.			
9. Exact solution of the Ising model in one dimension. Transfer matrix method.			
10. Globs' energy, magnetization, susceptibility, entropy, and specific heat. Two-point			
correlation function for the Ising models magnetization and critical temperature			
12. Susceptibility, internal energy, and specific heat within the mean-field theory.			
13. Landau theory of phase transition. Second-order phase transition. Effect of an-external			
field and susceptibility.			
14. First-order phase transitions. Tricritical point.			
Assessment Methods and Criteria			
Oral Exam			
Grading Scale (in %):			
A: 91% - 100%			
B: 81% - 90%			
C: 71% - 80%			
D. 01% - 70%			
E: 0% - 50%			
Grading System:			
The University recognises the following six degrees for the evaluation of the study results:			
a) A – excellent (excellent results) (numerical value 1)			
b) B – very good (above average results) (1.5)			
c) C – good (average results) (2)			
d) D – satisfactory (acceptable results) (2.5)			
e) $E = $ sufficient (results meet the minimum criteria) (3) f) EX = failed (requires further work) (4)			
Bibliography			

- 1. Bobák A.: Phase Transitions and Critical Phenomena, Project 2005/NP1-051 11230100466, European Social Fund, Košice 2007.
- 2. Stanley H.G.: Introduction to Phase Transitions and Critical Phenomena, Clarendon Press Oxford, 1971.
- 3. Reichel L.E.: A Modern Course in Statistical Physics, University of Texas Press, 1980.
- 4. Plischke M., Bergersen B.: Equilibrium Statistical Physics, World Scientific, 1994.
- 5. Kadanoff L.P.: Statistical Physics, Statistics, Dynamics and Renormalization, World Scientific, 2000.
- 6. Papon P., Leblond J., Meijer P.H.E.: The Physics of Phase Transitions, Concepts and Applications, Springer-Verlag, 2002.

