

P. J. ŠAFÁRIK UNIVERSITY FACULTY OF SCIENCE INSTITUTE OF MATHEMATICS Jesenná 5, 041 54 Košice, Slovakia

J. Zlámalová

On cyclic chromatic number of plane graphs

IM Preprint, series A, No. 1/2009 March 2009

On cyclic chromatic number of plane graphs

Jana Zlámalová*

Institute of Mathematics, Faculty of Science, P.J. Šafárik University, Jesenná 5, 040 01 Košice, Slovakia

Abstract. A cyclic colouring of a plane graph G embedded in a surface is a vertex colouring of G in which any two distinct vertices sharing a face receive distinct colours. The cyclic chromatic number $\chi_c(G)$ of G is the smallest number of colours in a cyclic colouring of G. It is conjectured that $\chi_c(G) \leq \lfloor \frac{3}{2}\Delta^*(G) \rfloor$ for any planar graph G with a maximum face size $\Delta^*(G)$. Sanders and Zhao in [3] proved that $\chi_c(G) \leq \lfloor \frac{5}{3}\Delta^*(G) \rfloor$ for any planar graph G. Their proof uses the Discharging Method and a knowledge of structural properties of a hypothetical minimal counterexample. In the present paper Lemma 2.5 of [3] about structural properties of a hypothetical minimal counterexample is generalized.

1 Introduction

A cyclic colouring of a plane graph G is a such colouring of vertices of G that whenever two distinct vertices share a face, they receive distinct colours. The cyclic chromatic number $\chi_{c}(G)$ of the graph G is the minimum number of colours in a cyclic colouring of G.

This invariant was introduced (in the dual form) by Ore and Plummer [2]. First upper bound $2\Delta^*(G)$ (where $\Delta^*(G)$ denotes a maximum face size of a graph G) was given by Ore and Plummer [2], later it was improved to $\left\lceil \frac{9}{5}\Delta^*(G) \right\rceil$ by Borodin, Sanders and Zhao [1] and the best known bound $\left\lceil \frac{5}{3}\Delta^*(G) \right\rceil$ is due to Sanders and Zhao [3].

On the other hand, there is an infinite family of plane graphs G satisfying $\chi_{c}(G) = \lfloor \frac{3}{2}\Delta^{*}(G) \rfloor$. It is conjectured that $\chi_{c}(G) \leq \lfloor \frac{3}{2}\Delta^{*}(G) \rfloor$ for any plane graph G.

Upper bounds for the cyclic chromatic number are so far all based on the well-known Discharging Method and it is hard to imagine that it will be otherwise for possible future improvements. Discharging Method is closely related

^{*}This work was supported by Slovak Research and Development Agency under the contract No. APVV-0007-07.

jana.zlamalova@upjs.sk

to information on structural properties of a hypothetical minimal counterexample, namely to reducible configurations (those which cannot appear in a minimal counterexample). In this article some reducible configurations are established by considering cyclic colourings of a plane graph G with $\left[\left(1+\frac{p}{q}\right)\Delta^*(G)\right]$ colours, where $\frac{1}{2} < \frac{p}{q} \leq \frac{2}{3}$.

2 Preliminaries

Let G = (V, E, F) be a simple 2-connected plane graph. The degree deg(x)of $x \in V \cup F$ is the number of edges incident with x. A vertex of degree k is a k-vertex, a vertex of degree at least k is a (k+)-vertex, a face of degree k is a kface. By V(x) we denote the set of all vertices incident with $x \in E \cup F$; similarly, F(y) is the set of all faces incident with $y \in V \cup E$. If $e \in E$, $F(e) = \{f_1, f_2\}$ and $\deg(f_1) \leq \deg(f_2)$, the pair $(\deg(f_1), \deg(f_2))$ is called the type of e. A (d_1, d_2) *neighbour* of a vertex x is a vertex y such that the edge xy is of type (d_1, d_2) . Let v be a vertex of degree n. Consider a sequence (f_1, \ldots, f_n) of faces incident with v in a cyclic order around v (there are altogether 2n such sequences) and the sequence $D = (d_1, \ldots, d_n)$ in which $d_i = \deg(f_i)$ for $i \in [1, n]$. The sequence D is called the type of the vertex v provided that it is the lexicographical minimum of the set of all such sequences corresponding to v. A vertex x_1 is cyclically adjacent to a vertex $x_2 \neq x_1$ if there is a face f with $x_1, x_2 \in V(f)$. The cyclic neighbourhood $N_{\rm c}(x)$ of a vertex x is the set of all vertices that are cyclically adjacent to x and the closed cyclic neighbourhood of x is $\bar{N}_{c}(x) := N_{c}(x) \cup \{x\}.$ The cyclic degree of x is $cd(x) := |N_c(x)|$. A cyclic colouring $\varphi: V \to C$ is called a k-colouring, if |C| = k (where elements of C are called colours of the mapping φ).

Let p, q be positive integers, $\frac{1}{2} \leq \frac{p}{q}$. Suppose that there is a plane graph G of maximum face size $\Delta^*(G) = d$ which has no cyclic k-colouring, $k = \lceil (1 + \frac{p}{q}) \cdot d \rceil$. Let such a graph with the smallest possible number of edges be called a (d, k)-minimal graph. A (d, k)-reducible configuration is a configuration that does not appear in any (d, k)-minimal graph.

The following reducibility lemma is a standard observation in the context of cyclic k-colourings (for appropriate k and any d), cf. [3]:

Lemma 1 1. A(d,k)-minimal graph is 2-connected.

2. An edge of type (d_1, d_2) with $d_1 + d_2 \leq d + 2$ is (d, k)-reducible.

3. A vertex x with cd(x) < k is (d, k)-reducible.

Sanders and Zhao in [3] defined a common vertex of two faces as follows: Given two faces f_1 , f_2 of degree at least 4 of a plane graph G, let a common vertex of f_1 and f_2 be a vertex incident with each of them which is either a vertex of degree 2, a vertex of degree 3 incident with a face of degree 3, or a vertex of degree 4 incident with two faces of degree 3. This concept of a common vertex is different from the conventional one. Note that if v is a common vertex of f_1 and f_2 , then all of the vertices cyclically adjacent to v are incident with either f_1 or f_2 . Also, let a *common vertex* be a vertex which is a common vertex of two faces of G. An *uncommon vertex* is one which is not common.

3 Results

The following lemma generalizes Lemma 2.5 of [3]:

Lemma 2 Let p, q be positive integers such that $\frac{1}{2} < \frac{p}{q} \leq \frac{2}{3}$, let G be a plane graph with $\Delta^*(G) = d$. Let f_1, f_2, f_3 be three faces of the graph G, let $n_{i,j}$ be the number of common vertices of f_i and f_j . Also, let n := 1 if there is a vertex incident with all of f_1, f_2, f_3 , else let n := 0. If $n_{1,2} \geq 1$ and $n_{1,3} + n_{2,3} + n \geq d - 1 + \frac{1-dp}{q}$, then this configuration is $(d, \left\lceil (1 + \frac{p}{q}) \cdot d \right\rceil)$ -reducible.

Proof. Suppose that G is a $(d, \left\lceil (1 + \frac{p}{q}) \cdot d \right\rceil)$ -minimal graph with faces f_1, f_2, f_3 as in the statement. Let x be a common vertex of f_1 and f_2 . Let H be G with an edge incident with x contracted. Since $\Delta^*(H) \leq d$, H has a cyclic $\left\lceil (1 + \frac{p}{q}) \cdot d \right\rceil$ -colouring.

Without loss of generality, there is a common vertex y of f_1 and f_3 whose colour does not appear in f_2 . (Note that by definition of a common vertex, it is clear that $x \neq y$.) This is true, for otherwise, for $i \in \{1, 2\}$, each of the $n_{i,3}$ colours on the common vertices of f_i and f_3 appears on the border of f_{3-i} and thus appear twice in $N_c(x)$. Note that $cd(x) \leq 2d - 2$ and thus x sees at most $2d - 2 - (n_{1,3} + n_{2,3}) \leq 2d - 2 + 1 - d + \frac{dp-1}{q} + 1 = (1 + \frac{p}{q}) \cdot d - \frac{1}{q} < \left[(1 + \frac{p}{q}) \cdot d \right]$ colours. Thus x may be coloured by a colour different from its cyclic neighbours, contradicting the minimality of G.

Suppose there is also a common vertex z of f_2 and f_3 whose colour does not appear in f_1 . Now there are at least $\frac{pd}{q}$ colours which do not appear in f_3 . Each of those colours appears in f_1 , or else if c is a colour in neither f_1 nor f_3 , then recolouring x with the colour on y and recolouring y with c gives a cyclic $\left[\left(1+\frac{p}{q}\right)\cdot d\right]$ -colouring of G. Symmetrically, arguing with z in place of y, each of those colours appears in f_2 . Thus, at most $d(1-\frac{p}{q})$ colours appear in f_2 which do not appear in f_1 . It follows that x sees at most $d + d(1-\frac{p}{q}) < \left[\left(1+\frac{p}{q}\right)\cdot d\right]$ -colouring of G.

The final case is to suppose that each of the $n_{2,3}$ colours appearing at the common vertices of f_2 and f_3 also appears in f_1 . Clearly, none of these colours appears among the common vertices of f_1 and f_2 . Thus, $\operatorname{cd}(y) \leq 2d - |V(f_1) \cap V(f_3)|$, and since x is uncoloured, including the colour on y itself, y sees at most $2d - |V(f_1) \cap V(f_3)| - n_{2,3} - 1 \leq 2d + 1 - d + \frac{dp-1}{q} - 1 = (1 + \frac{p}{q}) \cdot d - \frac{1}{q} < \left\lceil (1 + \frac{p}{q}) \cdot d \right\rceil$ colours. Thus x may be coloured with the colour on y, and then y may be recoloured with a colour it does not see to give a cyclic $\left\lceil (1 + \frac{p}{q}) \cdot d \right\rceil$ -colouring of G.

Lemma 3 Let p, q be positive integers such that $\frac{1}{2} < \frac{p}{q}$, let G be a plane graph with $\Delta^*(G) = d$. Let $x_0 \in V(G)$ be a vertex of type $(3, d, d_1, d)$, where $d_1 < 2\left\lceil \frac{pd}{q}\right\rceil - d + 4$, or of type (3, d, d). Let x_1, x_2 be neighbours of x_0 incident with a 3-face h. Let $f_i \neq h$ be the face incident with the edge x_0x_i , $i \in \{1, 2\}$ and let $f_3 \neq h$ be the face incident with the edge x_1x_2 . Let $n_{i,j}$ be the number of common vertices of f_i and f_j . If $n_{1,3} \geq 1$ and there is a common vertex v of faces f_2 and f_3 with $\operatorname{cd}(v) \leq \left\lceil (1 + \frac{p}{q}) \cdot d \right\rceil$, then this configuration is $(d, \left\lceil (1 + \frac{p}{q}) \cdot d \right\rceil)$ -reducible.

Proof. Suppose that G is a $(d, \left| (1 + \frac{p}{q}) \cdot d \right|)$ -minimal graph with vertices x_0, x_1, x_2, v and faces f_1, f_2, f_3 as in the statement. Let H be G with an edge incident with v contracted. Since $\Delta^*(H) \leq d$, H has a cyclic $\left[(1 + \frac{p}{q}) \cdot d \right]$ -colouring $\varphi : V(H) \to C$. This colouring will be used to find a cyclic colouring $\psi : V(G) \to C$. If not stated explicitly otherwise, we put $\psi(u) = \varphi(u)$ for any $u \in V(G) - \{v\}$.

If there is a colour $c \in C - \varphi(N(v))$, then we put $\psi(v) = c$, else v sees every colour exactly once. If there is $i \in \{0, 1\}$ and a colour $c \in C - \varphi(\bar{N}(x_i))$, then we put $\psi(x_i) = c$ and $\psi(v) = \varphi(x_i)$, else both x_0, x_1 see every colour at least once. Then, because of the structure of this configuration, it holds:

1. If $\deg(x_0) = 4$, then there are at least $2 \left\lceil \frac{pd}{q} \right\rceil - 1$ colours on at most $d + d_1 - 5$ vertices. Hence $2 \left\lceil \frac{pd}{q} \right\rceil - 1 \le d + d_1 - 5$ and $2 \left\lceil \frac{pd}{q} \right\rceil + 4 - d \le d_1$, a contradiction. 2. If $\deg(x_0) = 3$, then there are at least $2 \left\lceil \frac{pd}{q} \right\rceil - 2$ colours on at most d - 3 vertices. Hence $2 \left\lceil \frac{pd}{q} \right\rceil - 2 \le d - 3$ and, since $\frac{1}{2} < \frac{p}{q}$, $d + 1 < 2 \left\lceil \frac{pd}{q} \right\rceil + 1 \le d$, a contradiction.

4 An application

Lemma 4 The configuration C_i of Fig. $i, i \in \{1, 2\}$ (where encircled numbers represent degrees of corresponding vertices and vertices without degree specification are of an arbitrary degree) is (8, 13)-reducible.

Proof. Let G be a (8,13)-minimal graph. Let G contain a configuration C_i , $i \in \{1,2\}$. Let H be G with an edge incident with v contracted. Since $\Delta^*(H) \leq 8$,

H has a cyclic 13-colouring $\varphi : V(H) \to C$. This colouring will be used to find a cyclic colouring $\psi : V(G) \to C$. If not stated explicitly otherwise, we put $\psi(u) = \varphi(u)$ for any $u \in V(G) - \{v\}$.

If there is a colour $c \in C - \varphi(N(v))$, then we put $\psi(v) = c$, else v sees every colour exactly once. If there is a colour $c \in C - \varphi(\bar{N}(x_1))$, then we put $\psi(x_1) = c$ and $\psi(v) = \varphi(x_1)$, else also x_1 sees every colour exactly once.

Case i = 1: Then there is either a colour $c \in C - \varphi(\bar{N}(x_2))$ and we put $\psi(x_2) = c$ and $\psi(v) = \varphi(x_2)$ or a colour $c \in C - \varphi(\bar{N}(t))$ and we put $\psi(t) = c$ and $\psi(v) = \varphi(t)$.

Case i = 2: Then there is a colour $c \in C - \varphi(\bar{N}(x_2))$ and we put $\psi(x_2) = c$ and $\psi(v) = \varphi(x_2)$.

Theorem 5 Let H be a plane graph with $\Delta^*(H) = 8$. Then $\chi_c(H) \leq 13$.

Proof. By contradiction. Let G be a (8,13)-minimal graph. For any vertex $v \in V(G)$ let $c_0(v) = 1 - \frac{\deg(v)}{2} + \sum_{f \in F(v)} \frac{1}{\deg(f)}$ be the *initial charge* of vertex v. Then, using Euler's formula and the handshaking lemma, it is easy to see that $\sum_{v \in V} c_0(v) = 2$. If a vertex v is of type (d_1, \ldots, d_n) , then $c_0(v) = \gamma(d_1, \ldots, d_n) = 1 - \frac{n}{2} + \sum_{i=1}^{n} \frac{1}{d_i}$. Clearly, if π is a permutation of the set $\{1, \cdots, n\}$, then $\gamma(d_{\pi(1)}, \ldots, d_{\pi(n)}) = \gamma(d_1, \ldots, d_n)$.

A vertex $v \in V(G)$ is *positive* if $c_0(v) > 0$, otherwise it is nonpositive. For a vertex $v \in V$ let n(v) denote the number of all positive neighbours of v and let $n_{4+}(v)$ denote the number of all neighbours of v of degree at least 4.

Note that because of Lemma 1.3 it holds that $\delta(G) \geq 3$.

Now let us state the following redistribution rules leading from c_0 to c_5 (where the coordinate *i* of a rule R*i* means that R*i* is used when passing from c_{i-1} to c_i): **R1** A vertex *x* of type (4,7,8) with $n_{4+}(x) = 0$ sends an amount $c_0(x)$ to its (4,7)-neighbour.

R2 A (4+)-vertex v sends an amount $-c_1(x)$ to its neighbour x of type (4,7,8). **R3** A (4+)-vertex v sends an amount $-c_2(x) = -c_0(x)$ to its (8,8)-neighbour x of type (3,8,8).

R4 A (5+)-vertex v sends an amount $-c_3(x)$ to its (3,8)-neighbour x of type (3,8,8) with $c_3(x) > 0$.

R5 A 4-vertex v sends an amount $\frac{c_4(v)}{n(v)}$ to its (3,8)-neighbour x of type (3,8,8) with $c_4(x) > 0$.

Let $v \in V(G)$, denote $n = \deg(v)$ and let us show that $c_5(v) \leq 0$, which contradicts Euler's formula.

(1) If $n \ge 6$, then $c_5(v) \le c_0(v) + n \cdot \gamma(3, 8, 8) \le 1 - \frac{n}{2} + \frac{n}{6} + \frac{n}{16} + \frac{n}{12} = 1 - \frac{3n}{16} \le 0$. (2) If n = 5, then $c_5(v) \le c_0(v) + 5 \cdot \frac{1}{12} \le \gamma(3, 8, 3, 8, 8) + \frac{5}{12} = -\frac{1}{24} \le 0$. (3) If n = 4, then $c_0(v) \le \gamma(3, 8, 3, 8) = -\frac{1}{12}$ and $c_1(v) = c_0(v)$. Then if

n(v) = 0, then $c_5(v) = c_0(v) \leq 0$, else some of rules R2, R3, R5 was applied on v. Clearly, if R5 was used, then $c_5(v) = 0$.

(31) If R2, but not R3 (and R5) was applied on v, then $c_5(v) = c_2(v) \leq c_2(v)$ $c_0(v) + 4 \cdot 2\gamma(4,7,8) \le \gamma(3,7,4,8) + 8 \cdot \frac{1}{56} = -\frac{1}{168} \le 0.$

(32) If R3, but not R2 (and R5) was applied on v, then, $c_5(v) = c_3(v) \leq$ $\max\{\gamma(3,8,8,8) + 2 \cdot \frac{1}{12}, \gamma(8,8,8,8) + 4 \cdot \frac{1}{12}\} = -\frac{1}{8} \le 0.$ (33) If both R2 and R3 (but not R5) were used for v, then $c_5(v) = c_3(v) \le 0$

 $c_0(v) + 3 \cdot \frac{1}{12} + 2 \cdot \frac{1}{56} \le \gamma(4, 7, 8, 8) + \frac{2}{7} = -\frac{1}{14} \le 0.$ (4) If n = 3, then either $c_5(v) = c_0(v) \le 0$ or $c_0(v) > 0$ and v is either of type

(4, 7, 8) or of type (3, 8, 8).

(41) Let v be of type (4,7,8). If $n_{4+}(v) > 0$, then, by R2, $c_5(v) = c_2(v) = 0$. Otherwise $c_5(v) = c_1(v) = 0$ by R1 and configuration C_1 .

(42) Now let v be of type (3, 8, 8). If its (8, 8)-neighbour is of degree at least 4 or at least one of its (3, 8)-neighbours is of degree at least 5, then, by R3 or R4, we have $c_5(v) = c_4(v) \leq 0$. Otherwise, by Lemma 3, at least one of (3,8)-neighbours of v is of degree 4. Denote this vertex as z and denote the (3, 8)-neighbour of v distinct from z as y.

(421) If also $\deg(y) = 4$, then, by Lemma 3, at least one of y, z is not of type (3, 8, 3, 8). Therefore its charge after R4 is at most max{ $\gamma(3, 8, 4, 8) + 2 \cdot 2 \cdot$ $\frac{1}{56}, \gamma(3, 8, 5, 8), \gamma(3, 8, 6, 8), \gamma(3, 8, 7, 8) + 2 \cdot 2 \cdot \frac{1}{56}, \gamma(3, 8, 8, 8) + 2 \cdot \frac{1}{12} = -\frac{2}{21} \text{ and}$ so $c_5(v) \le \frac{1}{12} - \frac{2}{21} \le 0.$

(422) If $\deg(y) = 3$, then z is not of type (3, 8, 5-, 8) (by Lemma 3). Then, by rules, Lemma 3 and configuration $C_2 c_4(z) \leq \max\{\gamma(3, 8, 6, 8), \gamma(3, 8, 7, 8) +$ $2 \cdot 2 \cdot \frac{1}{56}$, $\gamma(3, 8, 8, 8) + \frac{1}{12} = -\frac{5}{24}$ and so $c_5(v) \le \frac{1}{12} - \frac{1}{2} \cdot \frac{5}{24} \le 0$.

References

- [1] O.V. BORODIN, D. P. SANDERS, Y. ZHAO, Cyclic colorings and their generalizations, Discrete Math. 203 (1999) 23–40
- [2] O. ORE AND M.D. PLUMMER, Cyclic coloration of plane graphs, in: Recent Progress in Combinatorics (Proceedings of the Third Waterloo Conference on Combinatorics, Academic Press, New York 1969) 287-293
- [3] D.P. SANDERS AND Y. ZHAO, A new bound on the cyclic chromatic number, J. Combin. Theory Ser. B 83 (2001) 102–111

Recent IM Preprints, series A

2004

- 1/2004 Jendrol' S. and Voss H.-J.: *Light subgraphs of graphs embedded in the plane and in the projective plane* – survey
- 2/2004 Drajnová S., Ivančo J. and Semaničová A.: Numbers of edges in supermagic graphs
- 3/2004 Skřivánková V. and Kočan M.: From binomial to Black-Scholes model using the Liapunov version of central limit theorem
- 4/2004 Jakubíková-Studenovská D.: *Retracts of monounary algebras corresponding to groupoids*
- 5/2004 Hajduková J.: On coalition formation games
- 6/2004 Fabrici I., Jendrol' S. and Semanišin G., ed.: Czech Slovak Conference GRAPHS 2004
- 7/2004 Berežný Š. and Lacko V.: *The color-balanced spanning tree problem*
- 8/2004 Horňák M. and Kocková Z.: On complete tripartite graphs arbitrarily decomposable into closed trails
- 9/2004 van Aardt S. and Semanišin G.: Non-intersecting detours in strong oriented graphs
- 10/2004 Ohriska J. and Žulová A.: Oscillation criteria for second order non-linear differential equation
- 11/2004 Kardoš F. and Jendrol' S.: On octahedral fulleroids

2005

- 1/2005 Cechlárová K. and Vaľová V.: The stable multiple activities problem
- 2/2005 Lihová J.: On convexities of lattices
- 3/2005 Horňák M. and Woźniak M.: General neighbour-distinguishing index of a graph
- 4/2005 Mojsej I. and Ohriska J.: On solutions of third order nonlinear differential equations
- 5/2005 Cechlárová K., Fleiner T. and Manlove D.: *The kidney exchange game*
- 6/2005 Fabrici I., Jendrol' S. and Madaras T., ed.: Workshop Graph Embeddings and Maps on Surfaces 2005
- 7/2005 Fabrici I., Horňák M. and Jendrol' S., ed.: Workshop Cycles and Colourings 2005

2006

- 1/2006 Semanišinová I. and Trenkler M.: *Discovering the magic of magic squares*
- 2/2006 Jendrol' S.: *NOTE Rainbowness of cubic polyhedral graphs*
- 3/2006 Horňák M. and Woźniak M.: On arbitrarily vertex decomposable trees
- 4/2006 Cechlárová K. and Lacko V.: *The kidney exchange problem: How hard is it to find a donor ?*
- 5/2006 Horňák M. and Kocková Z.: On planar graphs arbitrarily decomposable into closed trails
- 6/2006 Biró P. and Cechlárová K.: *Inapproximability of the kidney exchange problem*
- 7/2006 Rudašová J. and Soták R.: Vertex-distinguishing proper edge colourings of some regular graphs
- 8/2006 Fabrici I., Horňák M. and Jendrol' S., ed.: Workshop Cycles and Colourings 2006

- 9/2006 Borbel'ová V. and Cechlárová K.: Pareto optimality in the kidney exchange game
- 10/2006 Harmine V. and Molnár P.: Some experiences with the diversity in word problems
- 11/2006 Horňák M. and Zlámalová J.: Another step towards proving a conjecture by Plummer and Toft
- 12/2006 Hančová M.: Natural estimation of variances in a general finite discrete spectrum linear regression model

2007

- 1/2007 Haluška J. and Hutník O.: On product measures in complete bornological locally convex spaces
- 2/2007 Cichacz S. and Horňák M.: Decomposition of bipartite graphs into closed trails
- 3/2007 Hajduková J.: Condorcet winner configurations in the facility location problem
- 4/2007 Kovárová I. and Mihalčová J.: Vplyv riešenia jednej difúznej úlohy a následný rozbor na riešenie druhej difúznej úlohy o 12-tich kockách
- 5/2007 Kovárová I. and Mihalčová J.: Prieskum tvorivosti v žiackych riešeniach vágne formulovanej úlohy
- 6/2007 Haluška J. and Hutník O.: On Dobrakov net submeasures
- 7/2007 Jendrol' S., Miškuf J., Soták R. and Škrabuláková E.: *Rainbow faces in edge colored plane graphs*
- 8/2007 Fabrici I., Horňák M. and Jendrol' S., ed.: Workshop Cycles and Colourings 2007
- 9/2007 Cechlárová K.: On coalitional resource games with shared resources

2008

- 1/2008 Miškuf J., Škrekovski R. and Tancer M.: *Backbone colorings of graphs with bounded degree*
- 2/2008 Miškuf J., Škrekovski R. and Tancer M.: Backbone colorings and generalized Mycielski's graphs
- 3/2008 Mojsej I.: On the existence of nonoscillatory solutions of third order nonlinear differential equations
- 4/2008 Cechlárová K. and Fleiner T.: On the house allocation markets with duplicate houses
- 5/2008 Hutník O.: On Toeplitz-type operators related to wavelets
- 6/2008 Cechlárová K.: On the complexity of the Shapley-Scarf economy with several types of goods
- 7/2008 Zlámalová J.: A note on cyclic chromatic number
- 8/2008 Fabrici I., Horňák M. and Jendrol' S., ed.: Workshop Cycles and Colourings 2008
- 9/2008 Czap J. and Jendrol' S.: Colouring vertices of plane graphs under restrictions given by faces

Preprints can be found in: http://umv.science.upjs.sk/preprints