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Kataŕına Cechlárováa, Tamás Fleinerb and Zsuzsanna Jankóc
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Abstract. We study a real-life modification of the classical house-swapping problem that
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1 Introduction

A popular Czech movie from the 1970’s, called Kulový blesk (Ball lightning), describes
the ’greatest event in the history of migration’. The story starts by a meeting. The main
organizer, Doctor Radosta, hangs a schematics of Kulový blesk (see Figure 1) on the wall
and explains to the participants of the meeting:

”Gentlemen, on the day D, the circle will rotate. Mr and Mrs Kadlec are
divorcing, therefore they will separate into two apartments. Fortunately, this
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Figure 1: Picture from the film

divorce is compensated for by wedding Opatrná - Flieger, so starting with Mr
Severin, the chain joins and further it continues normally.”

Behind the scene one can feel the difficult housing situation in the Czechoslovak capital
Prague back then. Mr Knotek explains:

”We read 286 advertisements and answered 165 of them. We visited 32 apart-
ments, 29 people came to visit us. We have two children, one kitchen and
one bedroom. We need more space. And so we found ourselves in this giant
carussel of Dr. Radosta.”1

The film directly deals with a variant of a model, known in the Economics and Com-
puter science literature under the name the house-swapping game or the housing market
[15]. The main idea is an exchange of a certain indivisible good, traditionally called house,
although the same model applies to the exchange of other goods, for example undergrad-
uate housing at various universities [16], assigning professors to offices, kidney donors to
patients in need [13, 10, 8, 6, 11]. A class of models assumes property rights, i.e. each

1The original Czech text of both quotations is as follows:
”Přátelé, ten kruh se nám ve stanovený den pootoč́ı. Kadlecovi se rozváděj́ı, takže se nám rozděĺı do
dvou byt̊u, naštěst́ı ten rozvod máme kompenzován svatbou Opatrná - Flieger, takže poč́ınaje inženýrem
Seveŕınem se nám řetěz spoj́ı a dál už pokračuje normálně.”
”Přečetli jsme 286 inzerát̊u, na 165 jsme odpověděli. 32 byt̊u jsme si prohlédli my, 29 zájemc̊u se zase
dostavilo k nám. Máme dvě děti, pokoj a kuchyň. Chceme do věťśıho. A tak jsme se dostali až na tenhle
mamut́ı kolotoč doktora Radosty.”
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good has its owner and this owner will participate in the exchange only if she can thus
improve her situation [1].

The above quotations from the movie illustrate two aspects of the problem. First, it
might be extremely difficult to collect the necessary data. This aspect is also touched in
the scentific literature. Yuan [17] describes the large residence exchange fairs for subsidized
public housing in China (80 000 person-attendances in Beijing, May 1991). In other
setting, finding suitable kidney donors might involve extensive and expensive testing of
possible patient-donor pairs [13].

Second, when trying to find possible exchange for as many subjects as possible, it might
be necessary to include long cycles. These are undesired, as when just one exchange on the
cycle fails for any reasons, the whole exchange cycle falls apart. Therefore, for example
in the organization of kidney exchanges in UK only two-exchanges and three-exchanges
with a back-up are admitted [11].

2 Related work

Models of exchange of indivisible goods have commonly been studied under the name
housing market or the house allocation problem, as the term house has been adopted as a
synonym for the indivisible good in question.

In these models, there is usually a set of n agents, each one owns one unit of an
indivisible good and each one wants to end up again with one unit of this good, perhaps a
better one than his original. An obtained exchange can be evaluated according to several
optimization criteria: Pareto efficiency [3], popularity [4], rank maximality [9], core or
strict core [15, 12, 8, 6].

In our model, we suppose that each agent only indicates the set of acceptable houses
(i.e. she is indifferent between her acceptable houses) and our aim is to find a new house
for as many agents as possible. Notice that in this simple housing model, a maximum
size exchange corresponds to a maximum cardinality vertex disjoint cycle packing in a
directed graph G with vertices representing agents and arcs acceptable houses. This can
be solved efficiently by a method that is now a folklore and that can be described as
follows. Create the following bipartite graph H: replace each vertex v of G by two copies
v′ and v”, connect vertex v′ with v” by an edge of weight 0 and vertex v′ with vertex u”
by an edge with weight 1 if (v, u) is an arc in G. Each maximum weight perfect matching
in H corresponds to a maximum cardinality cycle packing in G and vice versa. As finding
a maximum weight perfect matching in a bipartite graph with N vertices and M edges
can be found in time O(N(M + N log N)) (see Theorem 17.3. in [14]), when applied to
the simple housing market this gives time complexity O(n(` + n log n)) where ` is the
total number of houses that all agents list as acceptable in their preference lists.

However when a restriction on the maximum length k of involved cycles is included,
this problem becomes intractable for any k ≥ 3 ( NP-hard, or even APX-complete, see



4 IM Preprint series A, No. 1/2015

[2, 7]).
This paper deals with another modification of the house allocation problem, brought

about by the existence of divorcing couples and engaged pairs. We shall show that this
modification is also hard. This is because the combinatorial structure of the problem is
much more complicated, the exchange chain may split several times, there might even not
be one single ”master” chain. Two examples of such more elaborate exchanges can be
seen in Figure 2.

Figure 2: Examples of more complicated exchanges.

3 Definitions and preliminary observations

The set of agents is A = S ∪ B ∪ G ∪ M ∪ W , where S = {s1, s2, . . . , sn1}, B =
{b1, b2, . . . , bn2}, G = {g1, g2, . . . , gn2}, M = {m1,m2, . . . ,mn3} andW = {w1, w2, . . . , wn3}
are the sets of single agents, boys, girls, men and women, respectively. For i = 1, 2, . . . , n2,
boy bi and girl gi form an engaged pair ei = (bi, gi), the set of these pairs is denoted by
E. For i = 1, 2, . . . , n3, man mi and woman wi form a divorcing couple di = (mi, wi) and
their set is denoted by D.

Each agent a ∈ S ∪ B ∪ G and each divorcing couple d ∈ D own a house h(a) and
h(d), respectively. Hence the set of houses is H = {h(a); a ∈ S ∪B ∪G ∪D}. There are
no other houses in the market.

Each agent a ∈ S ∪M ∪W and each engaged pair e ∈ E provide a set of acceptable
houses P (a) and P (e) respectively. This means that the boy and the girl of an engaged
pair want to move together into a common house. On the other hand, each member m,w
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of a divorcing couple d = (m,w) has his and her own set of acceptable houses P (m) and
P (w), respectively. Clearly, m and w want to split into two different houses.

We suppose that an agent (a divorcing couple) can stay in their own house and that
when an engaged pair move together to a new house then one of their original houses may
stay empty. However, when participating in an exchange, it is not allowed to keep one’s
own house (both houses of an engaged pair). This corresponds to the situation when
there is no money in the market (or its use is illegal), so people who move must ”pay” for
the good they obtain (the house they receive) by the good they originally own. In case
of divorcing couples this means that it is not allowed that the man or the woman stay in
their original house and the other spouse moves away, since in this case they have nothing
to give for the new good.

Further, nobody is allowed to become homeless, at least in this paper. This implies
that if a divorcing pair lets their house to a new tenant then both the wife and the husband
have to get a new house.

The system of acceptable sets (P (a), a ∈ S ∪ E ∪M ∪ W ) is called the preference
profile and we shall denote it by P .

An instance of the House-swapping problem with engaged and divorcing pair (hsed
in brief) is a triple (A,H,P).

Definition 1 An exchange is a 1-1 mapping M : A′ → H, where A′ ⊆ S ∪E ∪M ∪W ,
such that

(i) M(a) ∈ P (a) for each a ∈ A′;
(ii) if s ∈ A′ then there exists an agent a′ ∈ A′ such that M(a′) = h(s);

(iii) if e = (b, g) ∈ A′ then there exists a′ ∈ A′ such that M(a′) ∈ {h(b), h(g)};
(iv) for each d = (m,w) ∈ D, either both m,w belong to A′ or none. In the former case

there exists an agent a′ ∈ A′ such that M(a′) = h(d).

Conditions of Definition 1 express the requirements that each single agent moves into
an acceptable house, both members of an engaged pair move together into a house they
consider acceptable and the man and woman of a divorcing couple move into two different
houses such that each person finds this new house acceptable. The people in A′ will be said
to move in the exchange M (notice that when e ∈ A′ then two people move, namely, the
corresponding boy and girl). Those who are outside A′ are said to stay at home. Furher,
the conditions express the requirements that if somebody moves then he/she must give
up his/her house, or, at least one of the two houses of the engaged pair. In the case of the
engaged pairs, if the boy and the girl decide to move together into one of their original
houses and to keep the second one, then they do not need to participate in the exchange
and so we do not consider such pairs.

max-hsed denotes the problem of finding an exchange that moves a maximum possible
number of agents, given an instance J of hsed.

First we identify an efficiently solvable special case.
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Theorem 1 In an instance J of hsed, a necessary condition for the existence of an
exchange such that everybody moves, is |D| ≤ |E|. If this is the case, then the existence
of such an exchange can be decided and found in polynomial time.

Proof. The necessity of the condition is clear: the single agents demand the same number
of houses as they supply; and as each divorcing couple demands one more house than it
supplies, these houses must be provided by engaged pairs.

Now create a bipartite graph G(J) = (V, U,E) for J as follows. The color class V of
vertices contains one vertex for each single agent, each engaged pair and each member of
a divorcing couple, i.e. V = S ∪ E ∪M ∪W . The color class U = H, i.e. it corresponds
to houses. There is an edge between a ∈ V and h ∈ U if agent a finds the house h
acceptable. Further, for each e = (b, g) ∈ E introduce one virtual homeless player v(e)
who is interested only in the two houses h(b), h(g). Now there is an exchange where
everyone moves if and only if there is a matching in G(J) that covers all the houses
and all the nonvirtual agents. By the Mendelsohn-Dulmage theorem (see Theorem 16.8.
and Corollary16.8b. in [14]), to decide the existence of such a matching, we only have
to check whether there exist two matchings in G(J): one that covers all the houses and
another one that covers all the nonvirtual agents. These matching problems can be solved
efficiently, as finding a matching that covers n vertices needs n augmentations, while each
augmentation is a BFS that takes O(m) time in a graph with m edges. Finally, combining
the two matchings a’la Mendelsohn-Dulmage is linear in the size of the matchings, since
the union of the two matchings consists of cycles and paths and we have to pick one of
the matchings in each of the components.

However, below we show that max-hsed is an NP-complete problem, moreover, it
does not admit a polynomial approximation algorithm if P 6= NP .

4 Inapproximability

We shall reduce from the NP-complete problem (2,2)-e3-sat. This is the problem of
deciding, given a Boolean formula B in CNF in which each clause contains exactly 3
literals and, for each variable vi, each of literals vi and v̄i appears exactly twice in B,
whether B is satisfiable. Berman et al. [5] showed that (2,2)-e3-sat is NP-complete. [5].

The intuition of the proof can be explained as follows. We start from a boolean formula
B. There will be a divorcing couple for each clause ci and another divorcing couple for
each variable. These divorcing couples (thanks to the preferences of women) together with
a big set of dummy single agents, create one long cycle. The preferences are such that
either all the people on this cycle move or none of them does. There will be other agents
for each variable (providing houses for the men of the ’clause’ divorcing pairs). The trick
is to ensure that for one variable, only the two houses corresponding to the occurence of
nonnegated variable or only the two houses corresponding to the occurences of negated
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variable in the formula are available for these men, thus making the connection to the
satisfiability of the formula.

Theorem 2 max-hsed is not approximable within N1−ε where N is the number of
agents, for any ε > 0, unless P=NP.

Proof. Let B be an instance of (2,2)-e3-sat, i.e., a Boolean formula in CNF such that
each clause contains exactly three literals and each variable occurs exactly twice in B
negated and exactly twice nonnegated. Let the set of variables be X = {x1, x2, . . . , xn}
and the set of clauses C = {c1, c2, . . . , cm}.

We shall construct an instance of the hsed as follows.

We take an arbitrary ε > 0 and denote t =
⌈

1
ε

⌉
. Notice that t ≥ 1 and tε ≥ 1.

For each variable xi there will be a set of three divorcing couples d`i = (m`
i , w

`
i ),

` = 1, 2, 3, four engaged pairs eki = (bki , g
k
i ) and 4 single agents ski , k = 1, 2, 3, 4. The boys

b1
i and b2

i correspond to the first and the second occurence of literal xi and boys b3
i and

b4
i correspond to the first and the second occurence of literal x̄i. Let us call the subset of

the market corresponding to variable xi town Ti.

For each clause cj there is one divorcing couple δj = (µj, νj). Denote by v1
j , v

2
j and

v3
j the boys corresponding to the first, second and third literal in clause cj. (For easier

reference, agents corresponding to variables are denoted by Latin alphabet, those that
correspond to clause by Greek letters.)

The agents introduced so far will be called proper agents; their number is thus r =
2m+ n(6 + 8 + 4) = 2m+ 18n.

Now introduce R = (2r)t single dummy agents σi, i = 1, 2, . . . , R. So, the total number
of agents in the market is N = r +R.

The acceptable houses of the agents are given in Figure 3 and the structure of a town
is illustrated in Figure 4. The dashed arrows indicate that these houses are acceptable
for people outside the town.

The long cycle consists of divorcing couples δj, j = 1, 2, . . . ,m, followed by the divorc-
ing couples di, i = 1, 2, . . . , n and the dummy single agents σi, i = 1, 2, . . . , R.

Let us first suppose that there exists a boolean valuation f of variables that makes
B true. Notice that except for agents µj and agents m1

i everybody in the constructed
instance has only one acceptable house. Let us send the agents νj, σi, e

k
i , s

k
i , w

k
i ,m

2
i ,m

3
i to

these houses. Further define

M(µj) = h(vkj ) where vkj is the first true literal for f in clause cj.

If xi is true then we add to the exchange

M(m1
i ) = h(d3

i );M(m3
i ) = h(b3

i );M(w3
i ) = h(b4

i )
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P (νj) : h(δj+1) for j = 1, . . . ,m− 1

P (νm) : h(d1
1)

P (µj) : h(v1
j ), h(v2

j ), h(v3
j ) for j = 1, 2, . . . ,m

P (eki ) : h(ski ) for i = 1, 2, . . . , n, k = 1, 2, 3, 4

P (ski ) : h(gki ) for i = 1, 2, . . . , n, k = 1, 2, 3, 4

P (w1
i ) : h(d1

i+1) for i = 1, . . . , n− 1

P (w1
n) : h(σ1)

P (m1
i ) : h(d2

i ), h(d3
i ) for i = 1, 2, . . . , n

P (m2
i ) : h(b1

i ) for i = 1, 2, . . . , n

P (w2
i ) : h(b2

i ) for i = 1, 2, . . . , n

P (m3
i ) : h(b3

i ) for i = 1, 2, . . . , n

P (w3
i ) : h(b4

i ) for i = 1, 2, . . . , n

P (σi) : h(σi+1) for i = 1, . . . , R− 1

P (σR) : h(δ1)

Figure 3: Acceptable houses for agents.

This means that divorcing couple d2
i does not participate in the exchange and the houses

owned by boys b1
i , b

2
i are free for the men from the ’clause’ divorcing pairs. If xi is false

then we move these agents as follows:

M(m1
i ) = h(d2

i );M(m2
i ) = h(b1

i );M(w2
i ) = h(b2

i )

Now divorcing couple d3
i does not participate in the exchange and the houses owned by

boys b3
i , b

4
i are free for the men from the ’clause’ divorcing pairs.

It is easy to see that M is really an exchange and the number of moving agents is
2m for the clauses, 16 for each variable plus all the dummy agents. This is together
2m+ 16n+R.

Now suppose that B is not satisfiable. We shall show that it is impossible that the
agents on the long cycle will move. Since, if this cycle moves, then the man of each
divorcing ’clause’ pair moves to a house of a boy corresponding to a literal contained in
this clause. Further, in each town j, the man of the central divorcing couple d1

j will move
either to the house of divorcing pair d2

j or to the house of divorcing pair d3
j , forcing their

members either to the two houses h(b1
j) and h(b2

j) or to the two houses h(b3
j) and h(b4

j).
In the former case, variable vj can be defined to be true, in the latter it can be defined to
be false. This means that for each clause cj , the man µj of the ’clause’ divorcing pair δj
moves to a house that corresponds to a true literal. Thus B is satisfiable, after all.

So, if formula B is not safisfiable, all the agents on the long cycle stay at home, and
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Figure 4: Structure of a town.

hence the number of moving agents is at most 12n (i.e., the engaged pairs and single
agents in the town for each variable).

Now, if there were a polynomial approximation algorithm A with approximation guar-
antee N1−ε, then if this algorithm got as input an instance with at least 2m + 16n + R
moving agents, then it must output an exchange that moves at least the following number
of agents:

2m+ 16n+R

N1−ε =
2m+ 16n+R

(2m+ 18n+R)1−ε

>
R

(r +R)1−ε =
(r +R)ε

r+R
R

=
(r +R)ε

r
(2r)t

+ 1

≥ (r +R)ε

1
2

+ 1
(since (2r)t ≥ 2r as t ≥ 1)

=
2

3
(r +R)ε >

2

3

(
(2r)t

)ε ≥ 4r

3
(since tε ≥ 1)

=
4

3
(2m+ 18n) >

4

3
18n > 12n.

Hence A would be able to distinguish between instances where the long cycle moves and
those it does not, consequently, this polynomial algorithm would be able to distinguish
between Boolean formulas that are satisfiable and those that are not.

Hence, if P6=NP, this is a contradiction.

5 Fixed parameter tractability

Given the strong inapproximability result of the previous section, we want to explore
the problem from the parameterized complexity prespective. A natural candidate for a
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parameter is the number of engaged pairs |E| = n2 or the number of divorcing pairs
|D| = n3. First we prove a structural result that gives some intuition on how an exchange
could look like.

Given an exchangeM, let us introduce the exchange digraph G(M) (examples of such
digraphs are given in Figure 2). Its vertex set is V = S ∪ E ∪ D and its set of arcs
encodes the exchange in the following way. The tail of an arc is either a single agent,
or an engaged pair or a divorcing couple and its head is the vertex corresponding to the
house into which the agent (a single person, an engaged pair or a member of a divorcing
couple) at the tail of the arc moves. This means that there are three types of nonisolated
vertices in G(M):

• if x ∈ S, then the indegree of x as well as its outdegree is 1;

• if x ∈ E, then the indegree of x is 1 or 2, but the outdegree is 1;

• if x ∈ D, then the indegree of x is 1 and the outdegree is 2.

Lemma 1 Let M be an exchange for an instance J of hsed and let D′ ⊆ D be the set
of moving divorcing couples and E ′ ⊆ E the set of moving engaged pairs who give up both
their houses. Then there is a perfect matching ϕ between D′ and E ′ and a collection of
arc-disjoint paths (p(e), e ∈ E ′) such p(e) starts in e ∈ E ′ and ends in ϕ(e).

Proof. The total indegree in G(M) is the same as the total outdegree, so the number
of indegree 2 vertices (endgaged pairs in E ′) is the same as the number of outdegree 2
vertices (couples in D′). Assume that this number is m. Add m new arcs to G(M) so
that we add a new arc from each e ∈ E ′ to a different d ∈ D′. The obtained digraph
is Eulerian. It is well-known that the arc set of an Eulerian digraph can be decomposed
into arc disjoint cycles. Take the set of cycles C in this decomposition that contain at
least one new arcs. As each new arc goes from e ∈ E ′ to a d ∈ D′, taking these arcs out
of cycles of C leaves the paths as required. Hence the assertion is proved.

Examples of these arc-disjoint paths can again be seen in Figure 2 (a):

d1 → d2 → s8 → e2; d2 → e1; d3 → s5 → s6 → s7 → e3.

Lemma 1 implies that when we want to move m chosen divorcing couples, we need
(in a certain sense) m different engaged pairs; other engaged pairs in the instance (if any)
could keep one of their original houses. However, the task of finding a combination of
such paths and cycles to include the maximum possible number of agents is not obvious.
Therefore we shall use for an instance J of hsed an approach that we just describe.

Let us choose in J a set Σ of m divorcing couples and m engaged pairs (notice that this
construction applies also if m = 0, i.e., no divorcing couple moves) and create a digraph
GΣ(J) as follows. We start with the set of vertices V = S ∪D ∪E, from which we delete
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all the non-chosen divorcing couples. Each chosen divorcing pair d ∈ D ∩ Σ is replaced
by four vertices dw, dm, dh and dx. They represent the woman, the man, the house of
the couple and a dummy vertex. For each chosen engaged pair e ∈ E ∩ Σ we also have
four vertices eb, eg, et and ey (the boy’s house, the girl’s house, the pair together and a
dummy vertex); the non-chosen engaged pairs are represented by just one vertex.

Figure 5: Splitting the vertices for engaged pairs and divorcing couples.

Unless otherwise specified, arcs have weight 1 and they correspond to acceptable
houses: everbody points to the agent who owns an acceptable house of his/her. For
single agents this creates no confusion, for other agents we make the following specifica-
tions. If e ∈ E \ Σ then the incoming arcs correspond to the house of the girl as well as
to the house of the boy of e. The outgoing arcs will have weight 2, as they will represent
two people moving (the boy and the girl). For vertices corresponding to the set Σ we
further introduce the arcs with weights according to Figure 6, where the y-vertex of each
engaged pair is connected by an arc to the x-vertex of each divorcing couple. K denotes
a sufficiently big number, for example we can set K = 2(n1 + n2 + n3)2. The arcs with
weight K are called thick arcs, for brevity. The construction is also illustrated in Figure
5, where the dashed arcs correspond to original preferences of agents.

Lemma 2 There exists an exchange in J moving the agents in set Σ and further ` engaged
pairs and k single agents if and only if the digraph GΣ(J) admits a cycle packing of weight
4K + 2`+ k.

Proof. If the maximum weight of a cycle packing C in GΣ(J) is less than 4K, then C
leaves out at least one of the thick edges. If one of (dx, dm), (dh, dw) is missing then either
the man or the woman of d does not move, so it is not an exchange according to Definition
1. If the four vertices eb, eg, ed and et are not matched by a matching of size 2 then the
engaged pair e did not give away their second house that was needed for a divorcing pair
in Σ.
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arcs weight

(dx, dm), (dh, dw) K

(a, dh) 1 (if a finds the house of couple d acceptable)

(dm, a) 1 (if m finds the house of a acceptable)

(dw, a) 1 (if w finds the house of a acceptable)

(eb, et), (eg, et), (eb, ey), (eg, ey) K

(a, eb) 1 (if a finds the house of boy b acceptable)

(a, eg) 1 (if a finds the house of girl g acceptable)

(et, a) 2 (if the pair e finds the house of a acceptable)

(ey, dx) 0 the dummy arc

Figure 6: Arcs for the engaged pair and the divorcing couple.

On the other hand, if the weight of a maximum cycle packing C is more than 4K then
for each d ∈ Σ, C must include the dummy arc (ey, dx) for some e ∈ Σ. The cycle in C
that contains this arc corresponds to a path from the divorcing couple d to the engaged
pair e. The arcs of weight 1 count the number of moving single agents, men and women
and the arcs with weight 2 count for the two moving members of engaged pairs in E \Σ.

Now we can prove the main theorem in this section.

Theorem 3 max-hsed is FPT when parameterized by κ = max{|E|, |D|}.

Proof. The number of ways m divorcing couples and m engaged pairs in an instance I of
max-hsed can be chosen is

(|D|
m

)(|E|
m

)
. Summarizing, the number of the maximum weight

cycle packing problems we have to solve is

min{|D|,|E|}∑
m=0

(
|D|
m

)(
|E|
m

)
,

bounded by f(κ) = (κ + 1)κκ. Hence max-hsed can be solved by an algortihm whose
time complexity is f(κ)|I|O(1), where f is a computable function of the parameter κ only,
so max-hsed is fixed-parameter tractable.
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6 Conclusion

We showed that the house-swapping with the engaged pairs and divorcing couples is
inapproximable, but it is fixed-parameter tractable when parameterized by the maximum
of the number of divorcing couples and engaged pairs.
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