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Abstract

The areas of the squares in the Pythagorean theorem are replaced
by polygonal numbers and some new Pythagorean-type propositions are
proved. The hatching length of regular m-gons as a new parameter quan-
tifying the area of polygons is defined and the related propositions are
found.

keywords: Pythagorean theorem, polygonal numbers hatching length

1 Introduction

The following observations are motivated by the facts that the area of a planar
figure displayed on a screen can be expressed by a certain number of pixels; and
if the figure is drawn by a plotter, then its area can be characterized by total
length of a line which fills it in.

The generalizations of the Pythagorean theorem are of the three kinds. Firstly,
the squares on the sides of the right triangle are substituted by other geometrically
similar planar figures (Euclids Elements Book VI, Proposition 31 [5], see also J.
Edgren [3]). Secondly, the assumption of the right angle is omitted (the law
of cosines), or both of these generalizations occur simultaneously (Pappus’ area
theorem [7], see also H. W. Eves [4]). Thirdly, the other mathematical spaces
than the plane are considered (de Gua - Faulhaber theorem about trirectangular
tetrahedrons [4], further generalized by Tinseau [8], Euclidean n-spaces, Banach
spaces [6], see also [1]).

We will describe several pythagorean-type results close to the first kind men-
tioned above.
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2 Results

If positive integers a, b, c denote the lengths of the sides of a right triangle and
a < b < c, then by the Pythagorean theorem c2 = a2 + b2. Let us denote the
surface area of a regular m-gon with s as the length of its side by Am(s) and let
us rewrite the Pythagorean equality as A4(c) = A4(a) + A4(b). It is known that
Am(s) = s2 · m

4
· cot π

m
. It follows that if the areas of squares are substituted by

the areas of regular m-gons corresponding to the sides of the given right triangle,
then Am(c) = (a2 + b2) · m

4
· cot π

m
= Am(a) + Am(b), the equality remains valid.

We will show a similar relation holding for polygonal numbers.
Let us recall that a polygonal (triangular, square, pentagonal, m-gonal) num-

ber is a positive integer which can be represented by regular and discrete ge-
ometric pattern of equally spaced points (points in triangle, square, pentagon,
m-gon). In the next, the n-th m-gonal number Sm(n) is defined for positive in-
tegers m,n where m ≥ 3, as the sum of the first n elements of the arithmetic
progression starting from 1, with d = m − 2 as its difference, i.e. Sm(n) =

1 + (1 + d) + . . .+ (1 + (n− 1) · d) = (m−2)·(n2−n)
2

+ n (see Deza and Deza [2]).
If we substitute the areas of squares on the sides of a right triangle with

integer lengths of sides by square numbers, the equality S4(c) = S4(a) + S4(b)
will hold. However, if we substitute the square numbers by the pentagonal (or
by the triangular) numbers, then the equality will not longer be true. We will
show that the difference between the polygonal number on the hypotenuse and
the sum of the polygonal numbers of the same type on the other two sides is a
multiple of the incirle of the given triangle (namely multiple of r = a+b−c

2
).

Proposition 2.1. Let the positive integers a, b, c such that a < b < c denote the
lengths of the sides of a right triangle and let r be the inradius of this triangle.
Then Sm(c) = Sm(a) + Sm(b) + (m− 4) · r.

Proof.

Sm(a) + Sm(b) =
(m− 2) · (a2 − a)

2
+ a+

(m− 2) · (b2 − b)
2

+ b =

=
(m− 2) · (a2 + b2 − a− b+ c− c)

2
+ a+ b− c+ c =

=
(m− 2) · (c2 − 2r − c)

2
+ 2r + c =

(m− 2) · (c2 − c)
2

+ c− (m− 2) · 2r
2

+ 2r =

= Sm(c)− (m− 4) · r.

The Figure 1 shows a right triangle where a = 3, b = 4, c = 5, r = 1 and
S5(3) = 12, S5(4) = 22, S5(5) = 35. It is easy to see that the correspondent
identity holds: S5(5) = 35 = 12 + 22 + 1 = S5(3) + S5(4) + (5− 4) · 1.
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Figure 1: a = 3, b = 4, c = 5, r = 1 and S5(3) = 12, S5(4) = 22, S5(5) = 35

Another class of the figural numbers corresponding to the other polygonal
arrangement is the class of the centered polygonal numbers (called also polygonal
numbers of the second order). They arise by surrounding a central point by the
polygonal layers with the subsequently increasing length of the sides. Precisely,
the n-th centered m-gonal number CSm(n) is defined for positive integers m,n
where m ≥ 3, as the sum of the first n elements of the sequence starting with
1 and continuing with the arithmetic progression m, 2m, 3m, . . . , i.e. CSm(n) =

1 + m + 2m + . . . + (n − 1) · m = m·(n2−n)
2

+ 1 (see Deza and Deza [2]). It is
interesting that for this class, we obtain a similar result as above.

Proposition 2.2. Let the positive integers a, b, c such that a < b < c denote the
lengths of the sides of a right triangle and let r be the inradius of this triangle.
Then CSm(c) = CSm(a) + CSm(b) + (mr − 1).

Proof.

CSm(a) + CSm(b) =
m · (a2 − a)

2
+ 1 +

m · (b2 − b)
2

+ 1 =

=
m · (a2 + b2 − a− b+ c− c)

2
+ 2 =

m · (c2 − 2r − c)
2

+ 2 =

=
m · (c2 − c)

2
+ 1−mr + 1 = CSm(c)− (mr − 1).

The Figure 2 shows a triangle where a = 3, b = 4, c = 5, r = 1 and CS4(3) =
13, CS4(4) = 25, CS4(5) = 41. By the Proposition 2.2, CS4(5) = CS4(3) +
CS4(4) + (4− 1).

Remark 2.3. Let a, b, c denote the positive integers such that a2 + b2 = c2. Then
the identity Sm(c) = Sm(a) + Sm(b) holds if and only if m = 4 (the squares). If
m = 3, then S3(c) < S3(a) + S3(b), and if m > 4, then Sm(c) > Sm(a) + Sm(b).
The inequality CSm(c) > CSm(a) + CSm(b) holds for every m.
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Figure 2: a = 3, b = 4, c = 5, r = 1 and CS4(3) = 13, CS4(4) = 25, CS4(5) = 41

In the following part, we will consider regular m-gons with their every side
divided by points into n line segments of the length 1. These dividing points
together with the vertices of the polygon will be denoted by A0, A1, . . . , Amn−1 as
the Figure 3 shows. Let us define the hatching length of the regular m-gon for
an odd number m as the sum of lengths of some line segments AiAj, and denote it

by Hm(n). Precisely, let Hm(n) =
∑kn−1

i=1 |AiAmn−i|, where k is a positive integer
such that m = 2k+ 1. The Figure 3 shows the specific line segments AiAj in the
case m = 5, n = 4.

Figure 3: The hatching length in the regular 5-gon

The next proposition presents a relation between the hatching lengths of (2k+
1)−gons on the sides of a pythagorean triangle (a right triangle with integer side
lengths).

Proposition 2.4. Let the positive integers a, b, c such that a < b < c denote the
lengths of the sides of a right triangle and let r be the inradius of this triangle.
Let m be an odd integer, m ≥ 3. Then Hm(c) = Hm(a) +Hm(b) + r.
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The Figure 4 shows the case where a = 3, b = 4, c = 5, (r = 1) and m = 5.
The total length of the dashed line segments is exactly one inradius longer then
the total length of the dotted line segments.

Figure 4: The hatching length in the case a = 3, b = 4, c = 5, (r = 1) and m = 5

Proof. Firstly, we determine Hm(n) for a regular m-gon where m is an odd inte-
ger, i.e. m = 2k + 1, k ≥ 1, and n is a positive integer which denotes the length
of a side of the m-gon.

Let us denote A0, An, A2n, . . . , A(m−1)n the vertices of the regular m-gon (as
in the Figure 5) and divide every its side AinA(i+1)n, i ∈ {0, 1, . . . ,m− 1}, into n
segment lines AinAin+1,Ain+1Ain+2,. . ., Ain+(n−1)A(i+1)n. The Figure 5 shows the
case for m = 9 and n = 3.

Now, we dissect the given m-gon into one triangle A(k−1)nAknA(k+1)n and
(if k ≥ 2) k − 1 trapezoids A0AnA(2k−1)nA2kn, AnA2nA(2k−2)nA(2k−1)n, . . . ,
A(k−2)nA(k−1)nA(k+1)nA(k+2)n and the value of Hm(n) will be found as the sum of
lengths of the line segments lying in these sections. The sum of lengths of the
dotted segment lines in the triangle A(k−1)nAknA(k+1)n is (n−1)+ . . .+1 = n2−n

2
.

Thus, if k = 1 (m = 3), then H3(n) = n2−n
2

.

Let us denote by z1, z2, . . . zk−1 the lengths of the diagonals of the trapezoids,
approaching alternatively from one and from the other side to the center of the
polygon; e.g. z1 =

∣∣AnA(m−1)n

∣∣, z2 =
∣∣A(k−1)nA(k+2)n

∣∣, z3 =
∣∣A2nA(m−2)n

∣∣, . . .
Let zk−1 be the length of the diagonal belonging to the trapezoid containing the
center of the m-gon.

Using the suitable central angles and the right triangles, we obtain the values
z1, z2, . . . , zk−1. If we denote by R the circumradius of m-gon A0AnA2n . . . A(m−1)n

and by γ one half of the central angle corresponding to one side of the m-gon, i.e.
γ = 1

2
· 360◦
m

, then zi = 2R·sin(i+1)γ = n
sin γ
·sin(i+1)γ for every i ∈ {1, . . . , k−1}.
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Figure 5: The dissection for m = 9, n = 3

To compute the lengths of the segments lying in a trapezoid with the diagonal
of length zi, we apply the similarity of triangles. Since for every trapezoid the
total length of segments lying in it is nzi, we obtain

Hm(n) =
kn−1∑
i=1

∣∣AiAmn−i∣∣ =
n2 − n

2
+

k−1∑
i=1

nzi =
n2 − n

2
+ 2nR

k∑
i=2

sin iγ.

Finally, for m = 3 (k = 1) it holds

H3(a) +H3(b) =
a2 − a

2
+
b2 − b

2
=

=
a2 + b2 − c− a− b+ c

2
+
c2 − c− 2r

2
= H3(c)− r.

If m > 3 (k > 1) we have

Hm(a) +Hm(b) =
a2 − a

2
+ 2a

a

2 sin γ

k∑
i=2

sin iγ +
b2 − b

2
+ 2b

b

2 sin γ

k∑
i=2

sin iγ =

= a2

(
1

2
+

1

sin γ

k∑
i=2

sin iγ

)
+ b2

(
1

2
+

1

sin γ

k∑
i=2

sin iγ

)
− a+ b

2
=

= c2

(
1

2
+

1

sin γ

k∑
i=2

sin iγ

)
− a+ b

2
,
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and on the other side

Hm(c)− r =
c2 − c

2
+ 2c

c

2 sin γ

k∑
i=2

sin iγ − a+ b− c
2

=

= c2

(
1

2
+

1

sin γ

k∑
i=2

sin iγ

)
− a+ b

2
.

Now, let us define the hatching length of the regular m-gon with the side of
length n where m is an even integer, m = 2k, k ≥ 2. Again, let a regular m-gon
have all its sides divided by points into n line segments of the length 1. The
dividing points together with the vertices of the polygon will be denoted by Bi

as the Figure 6 shows. Then we define the hatching length of the regular m-gon
with the side of length n as Hm(n) =

∑kn−1
i=1

∣∣BiBmn−i
∣∣. The Figure 6 shows the

particular case for m = 6 and n = 4.

Figure 6: The hatching length in the regular 6-gon

Proposition 2.5. Let the positive integers a, b, c such that a < b < c denote the
lengths of the sides of a right triangle and let m be an even integer, m ≥ 4. Then
Hm(c) = Hm(a) +Hm(b).

The Figure 7 shows the case where a = 3, b = 4, c = 5, (r = 1) and m = 6.
Now, the total length of the dashed line segments is exactly the sum of the total
length of the dotted line segments.
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Figure 7: The hatching length in the case a = 3, b = 4, c = 5, (r = 1) and m = 6.

Proof. Let m = 2k, where k ≥ 2. It is obvious that H4(n) = n2 ·
√

2, (k = 2). In
next, let k > 2.

Let us denote B0, Bn, B2n, . . . , B(m−1)n the vertices of the regular m-gon (as
in the Figure 8) and divide every its side BinB(i+1)n, i ∈ {0, 1, . . . ,m− 1}, into n
segment lines BinBin+1, Bin+1Bin+2, . . . Bin+(n−1)B(i+1)n.

Figure 8: The dissection for m = 12, n = 3

Let k be even. The Figure 8 shows the case for m = 12 (k = 6) and
n = 3. We dissect the m-gon into k − 1 trapezoids B(i−1)nBinB(m−i−1)nB(m−i)n,
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i ∈ {1, . . . , k − 1}. By using the central symmetry of the regular m-gon, the
value of Hm(n) is twice the sum of lengths of the line segments lying in the
trapezoids B(i−1)nBinB(m−i−1)nB(m−i)n, for i ∈ {1, . . . , k

2
− 1} plus 2Rn (in the

central rectangular section), where R is the circumradius of m-gon.
Let us denote γ = 180

m
. Then similarly to the previous proof, we obtain values

zi = 2R · sin 2iγ = n
sin γ
· sin 2iγ for every i ∈ {1, . . . , k

2
− 1}. Thus the sum of

lengths of the line segments lying in the trapezoid B(i−1)nBinB(m−i−1)nB(m−i)n,
as well as in B(k+i−1)nB(k+i)nB(k−i−1)nB(k−i)n is nzi for i ∈ {1, . . . k

2
− 1}. Then

Hm(n) =
kn−1∑
i=1

∣∣BiBmn−i
∣∣ =

n2

sin γ
+

2n2

sin γ
·

k
2
−1∑
i=1

sin 2iγ.

Now, let k be odd. Applying an analogical reasoning we obtain

Hm(n) =
kn−1∑
i=1

∣∣BiBmn−i
∣∣ = 2

k−1
2∑
i=1

nzi =
2n2

sin γ
·

k−1
2∑
i=1

sin 2iγ.

Hence, if k = 2 (m = 4), then

H4(a) +H4(b) = a2 ·
√

2 + b2 ·
√

2 = c2 ·
√

2 = H4(c).

If k is an even integer, k > 2, then

H4(a) +H4(b) =
a2

sin γ
+

2a2

sin γ
·

k−2
2∑
i=1

sin 2iγ +
b2

sin γ
+

+
2b2

sin γ
·

k−2
2∑
i=1

sin 2iγ =
a2 + b2

sin γ
+

2a2 + 2b2

sin γ
·

k−2
2∑
i=1

sin 2iγ =

=
c2

sin γ
+

2c2

sin γ
·

k−2
2∑
i=1

sin 2iγ = Hm(c),

and if k is an odd integer, k > 2,then

Hm(a) +Hm(b) =
2a2

sin γ
·

k−1
2∑
i=1

sin 2iγ +
2b2

sin γ
·

k−1
2∑
i=1

sin 2iγ =

=
2a2 + 2b2

sin γ
·

k−1
2∑
i=1

sin 2iγ =
2c2

sin γ
·

k−2
2∑
i=1

sin 2iγ = Hm(c).
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Let us remark that for an even integer m,m ≥ 4, there is just one other
”natural” way how to hatch the regularm-gon (see Fig. 9). As above, let a regular
m-gon have all its sides divided by points into n line segments of the length 1.
The dividing points together with the vertices of the polygon will be denoted by
Bi as the Figure 9 shows. Then we define the longitudinal hatching length of
the regular m-gon with the side of length n as LHm(n) =

∑kn−n−1
i=1

∣∣Bn+iBmn−i
∣∣.

The Figure 9 shows the particular case for m = 6 and n = 4.

Figure 9: The longitudinal hatching length in the regular 6-gon

The next proposition can be proved by the same method as Proposition 2.5,
so the proof is ommited. Again (see Propositions 2.1, 2.2 and 2.4 above), the
difference between LHm(c) and the sum LHm(a) + LHm(b) is expressed by the
inradius of the right triangle.

Proposition 2.6. Let the positive integers a, b, c such that a < b < c denote the
lengths of sides of a right triangle. Let m be an even integer, m ≥ 4 and let r be
the inradius of this triangle. Then LHm(c) = LHm(a) + LHm(b) + 2r.

The Figure 10 shows the case where a = 3, b = 4, c = 5, (r = 1) and m = 6.
Now, the total length of the dashed line segments in the largest hexagon is 2r
longer than the sum of the total lengths of the dotted lines in the two smaller
hexagons together.
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Figure 10: The longitudinal hatching length in the case a = 3, b = 4, c = 5, (r = 1)
and m = 6
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