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Preface

The present textbook deals with exactly solved models and their diverse applications

in several branches of physics such as mathematical physics, statistical physics, condensed

matter physics and so on. Exactly soluble models are currently considered as an inspiring

research field in its own right, which regrettably requires a considerable knowledge of

sophisticated mathematics. Accordingly, my primary ambition was to provide an intro-

ductory course for undergraduate students that would cover the simplest exactly solved

models, whose rigorous solutions are available even after modest calculation. The present

textbook should be therefore regarded as an auxiliary graduate-level textbook, which

should serve as the student’s guide on this beautiful but surely intricate subject.

Even although I attempted to write largely self-contained textbook for undergraduate

students, it is worthy of notice that the course on Exactly Solvable Models in Statistical

Physics demands essential knowledges from the quantum mechanics, statistical physics,

phase transitions and critical phenomena, which are its indispensable prerequisities. The

most crucial fundamentals of these theories are briefly recalled in introductory remarks

just for remembering and not for substituting those comprehensive courses. The rest of

this textbook is entirely devoted to exactly solved lattice-statistical models with the main

emphasis laid on their possible applications in the condensed matter physics. It is the

author’s hope that the presented exact solutions are detailed enough in order to be easily

followed by undergraduate students even without a support of tedious proofs, cumbersome

theorems, longer argumentations, or obvious facts. This rather necessary compromise has

of course a certain unadvisable impact on ’exactness’ of the presented solutions.

Finally, it is worthwhile to remark that the present textbook makes just a slight

introduction into the simplest exactly solvable models and thus, the interested reader

is referred for the follow-up study to several excellent books on exactly solved models

quoted in the bibliography list on the next page. Note that the listed books were the

major knowledge sources used by creating this textbook and they might be regarded as

more advanced literature on this exciting research field.

Košice, June 2007 Jozef Strečka
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1 INTRODUCTORY REMARKS

1 Introductory Remarks

Statistical physics is one of the fundamental theories of physics dealing with equilibrium

properties of a large number of particles by the use of well established concept based either

on classical or quantum mechanics. In this regard, the term statistical mechanics is often

used as a synonym to statistical physics that covers probabilistic (statistical) approach

to classical or quantum mechanics concerning with many-particle systems. The most

important benefit resulting from this theory consists in that it relates the microscopic

properties of individual particles (atoms, molecules, or ions) to the macroscopic (bulk)

properties of matter. Even though the relationship between some macroscopic properties

and the essential properties of particles is occasionally elementary (for instance the mass

of material is simply a sum over particle masses), many material properties cannot be

simply elucidated from the microscopic point of view. In particular, statistical physics

enables to explain characteristic features of real materials at the microscopic level just

by imposing forces between constituent particles. Therefore, one necessarily needs merely

some plausible assumption about internal forces between the constituent particles to make

theoretical predictions for a given material. This assumption, built on some realistic

microscopic idea of how individual particles interact among themselves, constitutes a

framework for some simple idealization known as model.

Of course, each model serves only as an approximative description of physical reality

with the main goal to describe the macroscopic properties quantitatively. It is usually very

difficult to define a realistic model, which is on the one hand mathematically tractable,

but on the other hand provides a comprehensive description of all macroscopic features.

However, the most vigorous difficulties are encountered by attempting to formulate and to

solve the relevant model mathematically. There are nevertheless few valuable exceptions.

The most common example surely represents an ideal gas (no matter whether consisting of

classical particles or fermions and bosons) in which the constituent particles do not interact

among themselves until they undergo perfectly elastic collisions. Once the interparticle

interactions are established, suppose for instance the real gas instead of the ideal gas,

realistic models are highly celebrated if they are still exactly soluble. Unfortunately, such

1



1.1 Foundations of Ensemble Theory 1 INTRODUCTORY REMARKS

models are usually beyond the scope of standard courses on statistical physics because

rather sophisticated mathematics must be involved to obtain a rigorous solution. The

main goal of the present textbook is to make a slight introduction into the beauty of the

simplest exactly solvable models, which can be solved analytically by the use of simple

mathematical tools familiar even for undergraduate students.

1.1 Foundations of Ensemble Theory

For the benefit of the reader, we first briefly recall some foundations of statistical physics

to which the reader is often referred to in the next sections. Specific constraints laid

on environment of a macroscopic system (macrosystem) allows us to use the different

types of ensembles. In the present textbook, all calculations will be done either within

the canonical or grand-canonical ensemble. Within the canonical ensemble, which admits

only an interchange of energy between the macrosystem and its environment (the number

of particles is kept constant), the probability pi of finding the macrosystem at a certain

microscopic state (microstate) with the energy Ei is given by the Boltzmann’s factor

pi =
1

Z exp(−βEi), (1.1)

where β = 1/(kBT ), kB is Boltzmann’s constant, T is the absolute temperature and Z
denotes the normalizing factor, which ensures that the macrosystem is certainly found

in one of its possible microstates. In the consequence of that, the sum over probabilities

ascribed to a whole set of microstates is equal to unity (
∑

i
pi = 1) and this condition

unambiguously determines the normalizing factor

Z =
∑

i

exp(−βEi), (1.2)

which is usually referred to as the partition function, statistical sum or sum-over-states.

The physical meaning of the partition function rests in enumerating the number of mi-

crostates accessible to the macrosystem at a given temperature. The partition function

thus represents the most important quantity inasmuch as it allows to find the expected

(averaged) value of any microscopic property of the macrosystem, which is related to

2



1.1 Foundations of Ensemble Theory 1 INTRODUCTORY REMARKS

some macroscopic (observable) physical quantity.1 For instance, the averaged value of

all microscopic energies can be interpreted as the microscopic definition of the internal

energy

U =
∑

i

Eipi =
1

Z
∑

i

Ei exp(−βEi) = −∂ lnZ
∂β

. (1.3)

The latter equation proves, for instance, that the internal energy can be simply obtained

by performing the derivative of the partition function with respect to the inverse temper-

ature β. It is quite straightforward to derive similar relations connecting the partition

function with other thermodynamic quantities as well. For brevity, the final microscopic

expressions are listed below for the Helmholtz free energy F and entropy S

F = −kBT lnZ and S = kB lnZ − 1

T

∂ lnZ
∂β

. (1.4)

In the quantum version of the canonical ensemble, the probability of finding the

macrosystem in one of its available microstates relates to the density matrix operator

ρ̂ =
1

Z exp(−βĤ), (1.5)

in which Ĥ denotes the Hamilton operator (Hamiltonian) and Z is the quantum-mechanical

analogue of the classical canonical partition function

Z = Tr exp(−βĤ). (1.6)

Obviously, the partition function can be now calculated as a trace over the whole Hilbert

space constituted by arbitrary but complete basis of microstates. The density matrix

operator allows us to calculate the expected (averaged) value of in principle arbitrary

observable physical quantity using the relation

〈Â〉 = Tr(Âρ̂) =
1

ZTr[Â exp(−βĤ)]. (1.7)

It is worthy of notice that the calculation of the partition function (1.6) provides even

within the quantum-mechanical treatment the most convenient way how to access the

most important thermodynamic quantities, since the relations (1.3), (1.4) and others that

connect the partition function with other thermodynamic variables still remain valid.

1Expected (averaged) value means that this quantity is calculated for all available microstates of a

macrosystem and then is weighted according to the corresponding Boltzmann’s factors.

3



1.2 Phase Transitions and Critical Phenomena 1 INTRODUCTORY REMARKS

If the macrosystem might exchange particles with its environment, it is very advis-

able to pass from the canonical ensemble to the grand canonical ensemble. In order to

ensure conservation of the total number of particles, it is necessary to introduce chemical

potentials µj related to each kind of the constituent particles (j = 1, . . . , n; one for each

kind of particles) and to replace the canonical partition function with the grand canonical

partition function

Ξ =
∑

i

exp



β





n
∑

j=1

µjNij − Ei







 , (1.8)

in which Nij denotes the total number of particles of jth kind in the ith microstate with the

overall energy Ei and the first summation is carried out over all possible microstates. The

averaged number of particles of the jth kind can be calculated from the grand canonical

partition function

〈Nj〉 = kBT
∂ ln Ξ

∂µj

(1.9)

together with other basic thermodynamic potentials such as the grand potential Ω, inter-

nal energy U , Helmholtz free energy F , or entropy S

Ω = −kBT ln Ξ, U = −∂ ln Ξ

∂β
+ kBT

∑

j

µj
∂ ln Ξ

∂µj

, (1.10)

F = −kBT ln Ξ + kBT
∑

j

µj
∂ ln Ξ

∂µj

, S = kB ln Ξ − 1

T

∂ ln Ξ

∂β
. (1.11)

1.2 Phase Transitions and Critical Phenomena

Phase transitions designate an abrupt change in physical properties, which is enforced

by a small change of some thermodynamic variable such as the temperature. This phase

change occurs at some special points called as critical points, where two or more phases

coexist together or become indistinguishable. As a result, the macrosystem exhibits at a

critical point either discontinuity or non-analyticity in one or more thermodynamic quan-

tities. Strictly speaking, the phase transition may (but need not) appear just in the limit

of infinite system, which is often referred to as thermodynamic limit. It should be men-

tioned that both the aforedescribed ensembles, canonical as well as grand canonical, differ

4



1.2 Phase Transitions and Critical Phenomena 1 INTRODUCTORY REMARKS

merely in the way how they allow macrosystem to fluctuate between available microstates.

These fluctuations become negligible in the thermodynamic limit and thus, the different

ensembles yield equivalent thermodynamic functions. In other words, the bulk properties

of the studied macrosystem do not depend on a particular choice of the ensemble to be

used for its description. Under these circumstances, the best ensemble for calculation is

that one, which allows the most straightforward derivation of the partition function.

One of the most significant achievement of the equilibrium statistical physics is closely

associated with the understanding of phase transitions and critical phenomena in a wide

variety of physical systems. Important revision in the understanding of phase transi-

tions has been achieved when Lars Onsager succeeded in obtaining the exact solution for

the two-dimensional (2D) Ising model [1], which became the most notable paradigm of

exactly solved model. The beauty of Onsager’s solution lies in an exact evidence of a

striking phase transition, which is accompanied with a singular behaviour of several ther-

modynamic quantities in the vicinity of critical point. Besides, Onsager’s famous solution

afforded exciting progress in the understanding of phase transitions, since it has furnished

a rigorous proof that a phase transition may result solely from short-range forces between

nearest neighbours. Even though this exact solution has been initially regarded just as a

mathematical curiosity without any physical relevance to the real-world behaviour, this

opinion rapidly diminished in evidence of other exactly solved models. In this regard, one

of the most essential questions appearing in the field of exactly soluble models relates to

an exact nature of discontinuities and singularities accompanying each phase transition.

There are several ways how to classify phase transitions. For instance, phase transi-

tions can be classified according to the degree of non-analyticity appearing at a critical

point. According to Ehrenfest’s classification scheme, phase transitions are distinguished

by the lowest derivative of the free energy that becomes discontinuous at a critical point.

So, first-order phase transitions exhibit a discontinuity in the first derivative of the free

energy, while second-order phase transitions possess a discontinuity in the second deriva-

tive and so on. It should be stressed that this simple scheme disables classification of

phase transitions at which some of the free energy derivative(s) diverges. Therefore, the

modern (Landau) classification scheme distinguishes two different kinds of phase transi-

5



1.3 Scaling and Universality Hypotheses 1 INTRODUCTORY REMARKS

tions. At discontinuous (first-order) phase transitions, the macrosystem either absorbs

or releases latent heat needed for completion of a phase change due to the finite entropy

change. The most characteristic feature of the discontinuous phase transition consists in

a coexistence of different phases at a critical point. On the contrary, the phases become

indistinguishable at a critical point of continuous (second-order) phase transitions and

hence, latent heat is not required for completion of a phase change.

1.3 Scaling and Universality Hypotheses

Striking and often hardly understandable aspects of critical phenomena demanded some

simplification, which has been achieved through scaling and universality hypotheses.

Namely, it turns out that many precise details of interactions established between con-

stituent particles are irrelevant, at least at a critical point, in determining the bulk prop-

erties of the macrosystem. As a matter of fact, the scaling hypothesis presumes that

each macrosystem exhibits self-similar properties near a critical point, which means, that

its macroscopic properties are invariant under the transformation of scale. On the other

hand, the universality hypothesis predicts that very different macrosystems may exhibit

remarkably similar behaviour close to their respective critical points. It is worthy to men-

tion that both the hypotheses have been developed from the same underlying foundation;

constituent particles far apart in a given macrosystem are strongly correlated with each

other below a critical point even if there is no direct interaction between them. Precisely

at a critical point, the peculiarly strong correlation develops at an infinite distance even

if only short-range forces, such as nearest-neighbour pairwise interactions, are present

in the macrosystem. Intuitively, one would rather expect an exponential decay of the

inter-particle correlation with a distance r between particles according to the exponential

character of the Boltzmann’s factor. In the consequence of that, the final expression for

the correlation function Γ should follow the exponential law

Γ(r, T ) = exp[−r/ξ(T )], (1.12)

where ξ denotes the so-called correlation length that represents a characteristic length

scale above which inter-particle correlations become negligible. By contrast, the correla-

6



1.3 Scaling and Universality Hypotheses 1 INTRODUCTORY REMARKS

tion function usually follows at a critical point a rather strange power-law decay

Γ(r) = r2−d−η, (1.13)

which is unambiguously characterized by means of the critical exponent η and the spatial

dimensionality d of the considered model system. Critical exponents, such as the critical

exponent η for the correlation function but also that ones for other thermodynamic quan-

tities, seem to depend just on the most fundamental features of the macrosystem such as

its spatial dimensionality and symmetry. Accordingly, the macrosystems belonging to the

same universality class should merely have the same

• the spatial dimensionality d;

• the number of components n (symmetry) of the order parameter2.

The concept of universality then predicts that different macrosystems, which might be

diverse in their nature but belong to the same universality class, should behave very

similarly close to their respective critical points. In this respect, each universality class

can be characterized by the unique set of universal critical exponents valid for each its

member. For further convenience, let us define critical exponents for basic thermodynamic

quantities, which characterize the response of a magnetic system with respect to a change

of the temperature T and the external magnetic field H

Specific Heat C = t−α (t → 0+), C = (−t)−α′

(t → 0−); (1.14)

Magnetization M = H1/δ (t = 0), M = (−t)β (t → 0−); (1.15)

Susceptibility χ = t−γ (t → 0+), χ = (−t)−γ′

(t → 0−); (1.16)

Correlation Length ξ = t−ν (t → 0+), ξ = (−t)−ν′

(t → 0−); (1.17)

in which t ≡ (T − Tc)/Tc is used to measure a relative variation of the temperature from

the critical value Tc. It is worthy to notice that the aforementioned critical exponents

should obey following scaling relations

α′ + 2β + γ′ = 2, G. S. Rushbrook (1.18)

2the order parameter is the quantity, which measures the amount of ordering below a critical point.

7



1.3 Scaling and Universality Hypotheses 1 INTRODUCTORY REMARKS

α′ + β(δ + 1) = 2, R. B. Griffiths (1.19)

γ′ = ν ′(2 − η), M. E. Fisher (1.20)

dν ′ = 2 − α′, Essam-Fisher Hyperscaling (1.21)

α = α′, γ = γ′, ν = ν ′, (1.22)

which should hold as a result of the validity of the scaling hypothesis. It is not a purpose

of the present course to justify all these scaling relations, however, all known exactly

solved models validate them without exception, yet. The total set of scaling relations is

sometimes known as a two-exponent scaling, since if two independent exponents are given,

then all the other exponents can be obtained from the scaling relations (1.18)-(1.22). For

illustration, exact values for critical exponents of several exactly solved models are listed

in the Table 1.

Table 1: Some microscopic models, their spatial dimensionality and critical exponents.

d α = α′ β γ = γ′ δ ν = ν ′ η

Ising 1 1 0 1 ∞ 1 1

Ising 2 0 1
8

7
4

15 1 1
4

Baxter-Wu 2 2
3

1
12

7
6

15 2
3

1
4

Mean-field ∞ 0 1
2

1 3 1
2

0

8



2 1D ISING MODEL

2 1D Ising Model

There is a class of exactly solvable models, which are of particular interest because of

their utility and versatility in representing real-world systems. Among these, the simple-

minded Ising model is perhaps the most versatile model that is mathematically tractable.

Accordingly, we will start our study on exactly solvable models just with the Ising model.

Let us find the simplest model, which would provide an approximative description

of insulating magnetic materials. Each insulating magnetic material consists of entities

(atoms, molecules, ions), which need not be carriers of the magnetic moment and enti-

ties, which are necessarily carriers of the magnetic moment. Suppose that an array of

the latter entities, i.e. those which have the non-zero magnetic moment, constitutes the

magnetic lattice of this material. For simplicity, we will restrict our attention just to crys-

talline magnetic materials even though this assumption is not indispensable. Under this

assumption, however, the magnetic lattice also shows a perfect crystal order and further

simplifications immediately suggest themselves. If the carriers of magnetic moment are

small dipole magnets, for which field of force decays as a third power of their distance, it

would be adequate to account for nearest-neighbour interactions only. Considering that

the magnetic moment arises from the spin, which is quantized and of pure quantum-

mechanical origin, it is quite reasonable to suppose that little magnets can point either

in one conspicuous direction, or, on the contrary, in opposite direction. Thus, one finally

arrives at definition of the Ising model: spins (little dipole magnets) located at vertices

of the magnetic lattice are able to point ’up’ or ’down’ and the total magnetic energy

is thoroughly determined by overall spin configuration on the magnetic lattice. Hence,

one Ising spin variable σi = ±1 (i = 1, 2, . . . , N) should be ascribed to each site of the

magnetic lattice (N denotes the total number of sites) and this spin variable unambigu-

ously determines a projection of the magnetic moment at ith lattice site. Altogether, it

could be concluded that all macroscopic properties will be entirely given by the overall

configurational energy of the Ising spins on the magnetic lattice.

9



2.1 Open Ising Chain: Combinatorial Approach 2 1D ISING MODEL

2.1 Open Ising Chain: Combinatorial Approach

Let us start by writing the Hamiltonian of the open Ising chain

H = −
N−1
∑

i=1

Jiσiσi+1, (2.1)

where σi = ±1 is the Ising spin variable located at ith lattice site, Ji denotes the exchange

interaction between ith and (i+1)st nearest neighbours and N labels the total number of

sites in the spin chain. As a rule, the crucial step represents calculation of the partition

function Z, which is given by

Z =
∑

σ1=±1

∑

σ2=±1

. . .
∑

σN=±1

exp(−βH). (2.2)

Substituting the Hamiltonian (2.1) to a canonical definition of the partition function (2.2)

leads after straightforward modify to the following relation

Z =
∑

σ1=±1

∑

σ2=±1

. . .
∑

σN=±1

exp
[

β
N−1
∑

i=1

Jiσiσi+1

]

=
∑

σ1=±1

∑

σ2=±1

. . .
∑

σN=±1

exp(βJ1σ1σ2) exp(βJ2σ2σ3) . . . exp(βJN−1σN−1σN). (2.3)

It is quite obvious that the spin σN enters exclusively into the last expression of the

product listed in the latter Eq. (2.3) and hence, the partial summation over spin states

of the spin σN can be performed independently of other summations. In this respect, it

is advisable to use this property and to arrange Eq. (2.3) into the following form

Z =
∑

σ1=±1

∑

σ2=±1

. . .
∑

σN−1=±1

exp(βJ1σ1σ2) exp(βJ2σ2σ3) . . .
∑

σN=±1

exp(βJN−1σN−1σN)

=
∑

σ1=±1

∑

σ2=±1

. . .
∑

σN−1=±1

exp(βJ1σ1σ2) exp(βJ2σ2σ3) . . . 2 cosh(βJN−1σN−1). (2.4)

If doing so, the spin variable σN−1 now enters in the last term of the expression (2.4) into

the argument of even function and in the consequence of that, this argument becomes

independent thereof. With all this in mind, the resulting expression for the partition

function (2.4) can be further simplified to

Z = 2 cosh(βJN−1)
∑

σ1=±1

∑

σ2=±1

. . .
∑

σN−1=±1

exp(βJ1σ1σ2) exp(βJ2σ2σ3) . . .

exp(βJN−2σN−2σN−1). (2.5)

10



2.1 Open Ising Chain: Combinatorial Approach 2 1D ISING MODEL

It can be readily understood that Eq. (2.5) represents, notwithstanding of the multiplica-

tive factor 2 cosh(βJN−1) in front of the summations, the partition function of the open

Ising chain with in total (N − 1) spins. Moreover, this procedure can be recurrently

repeated with the spin σN−1 and also others. By performing this sequence of recurrent

summations, one arrives at a final expression for the partition function

Z = 2 cosh(βJN−1)2 cosh(βJN−2) . . .
∑

σ1=±1

2 cosh(βJ1σ1)

= 2
N−1
∏

i=1

2 cosh(βJi) = 2N
N−1
∏

i=1

cosh(βJi). (2.6)

The equation (2.6) represents a central result of our calculation from which all character-

istic features of the open Ising chain can be particularly examined with the help of basic

thermodynamical-statistical relations. For illustrative purposes, the thermodynamics of

the closed Ising chain will be studied more systematically in the following part.

Exercises

1. Evaluate
∑

σ1=±1

∑

σ2=±1

. . .
∑

σN=±1

2.

2. Evaluate
∑

σ1=±1

∑

σ2=±1

. . .
∑

σN=±1

2 sin(ασ1).

3. Evaluate
∑

σ1=±1

∑

σ2=±1

. . .
∑

σN=±1

2 cos(ασ2).

4. Evaluate
∑

σ1=±1

∑

σ2=±1

. . .
∑

σN=±1

N
∏

i=1

[

2 cosh(ασi)
]

.

5. Verify for open Ising chain that 〈σ1σ2〉 = ∂ lnZ
∂βJ1

.

6. Verify for open Ising chain that 〈σiσi+1〉 = ∂ lnZ
∂βJi

.

7. Verify for open Ising chain that 〈σiσi+r〉 = ∂r lnZ
∂βJi+r−1...∂βJi+1∂βJi

.

8. Calculate pairwise spin correlations 〈σ1σ2〉, 〈σiσi+1〉 and 〈σiσi+r〉 for open Ising chain.

9. By expanding exp(ασi) into a series exp(ασi) =
∞
∑

i=0

aiσ
i verify a validity of the exact

van der Waerden identity: exp(ασi) = cosh(α) + σi sinh(α).

10. Prove Eq. (2.6) by substituting the modified van der Waerden identity for

exp(βJiσiσi+1) = cosh(βJi) + σiσi+1 sinh(βJi) into Eq. (2.3)!
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2.2 Closed Ising Chain: Transfer-Matrix Method

Now, let us start with a fairly simple Hamiltonian for the Ising model on a closed chain,

which includes, in addition to the pairwise spin-spin interaction J , also the single-spin

interaction H. While the former term should serve for describing the pairwise exchange

interaction between the nearest-neighbour spins, the latter term should account for the

magnetostatic Zeeman energy of a single spin (magnetic moment) placed in an external

magnetic field H. The Hamiltonian of closed Ising chain of N spins is then given by

H = −J
N
∑

i=1

σiσi+1 − H
N
∑

i=1

σi, (2.7)

where the same strengths of nearest-neighbour coupling are assumed for simplicity and the

periodic boundary condition is imposed by the constraint σN+1 ≡ σ1. This is equivalent

to joining the two ends of the Ising chain as to form a closed circle. It is worthwhile

to remark that the periodic boundary condition ensures a translational invariance of the

closed Ising chain what largely simplifies further treatment. On the other hand, the

inclusion of the single-spin interaction term H into the Hamiltonian (2.7) precludes the

application of the simple combinatorial approach, which has been rather efficiently used

in the preceding part to attain the exact solution for the open Ising chain in an absence

of the external magnetic field. The most straightforward way to obtain the exact solution

for the Ising chain in a presence of the external field is offered by the transfer-matrix

method originally introduced to statistical physics by H. A. Kramers and G. H. Wannier

[2]. This rather powerful technique is of particular importance for at least two reasons.

First, this method formulates the problem of finding the exact solution in a relatively

easily tractable matrix form and secondly, this useful device is rather general and can be

adapted to other interacting many-particle systems, as well.

For further convenience, it is very advisable to rewrite the total Hamiltonian (2.7) into

the most symmetric form

H =
N
∑

i=1

[−Jσiσi+1 − H(σi + σi+1)/2] . (2.8)

By the use of the symmetrized Hamiltonian (2.8), the partition function can easily be

12
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factorized into a product of several terms each involving just two adjacent spins

Z =
∑

σ1=±1

∑

σ2=±1

. . .
∑

σN=±1

N
∏

i=1

exp[βJσiσi+1 + βH(σi + σi+1)/2]. (2.9)

Next, let us formally substitute each factor in the product (2.9) by the function T (σi, σi+1)

depending just on the two nearest-neighbouring spins σi and σi+1 in order to obtain

Z =
∑

σ1=±1

∑

σ2=±1

. . .
∑

σN=±1

T (σ1, σ2)T (σ2, σ3) . . . T (σi, σi+1) . . . T (σN , σ1), (2.10)

where

T (σi, σi+1) = exp[βJσiσi+1 + βH(σi + σi+1)/2]. (2.11)

It should be mentioned that the function (2.11) is not the only possible choice for

T (σi, σi+1), it can be multiplied for instance by any factor exp[a(σi − σi+1)] (a is ar-

bitrary constant) without loosing a validity of the overall product (2.9). However, this

choice is the only one that preserves a complete symmetry with respect to σi ↔ σi+1

interchange

T (σi, σi+1) = T (σi+1, σi). (2.12)

At this stage, it is useful to make a small calculation that reveals an essence of the

expression (2.11). Recalling that the spin σ2, for example, enters in Eq. (2.10) just to the

two side-by-side standing expressions T (σ1, σ2) and T (σ2, σ3), the summation over spin

states of the spin σ2 can be performed regardless of other expressions to emerge within

this product. Thus, one easily finds that

∑

σ2=±1

T (σ1, σ2)T (σ2, σ3) =
∑

σ2=±1

exp[βJσ2(σ1 + σ3) + βH(σ1 + 2σ2 + σ3)/2] (2.13)

= exp[βH(σ1 + σ3)/2]
{

exp[βJ(σ1 + σ3) + βH] + exp[−βJ(σ1 + σ3) − βH]
}

.

Now, we will show that the same result is obtained by assuming that the expression

T (σi, σi+1) is the two-by-two matrix with appropriately chosen matrix elements

T (σi, σi+1)=







T (+, +) T (+,−)

T (−, +) T (−,−)





=







exp(βJ + βH) exp(−βJ)

exp(−βJ) exp(βJ − βH)





, (2.14)

which are related to four possible spin configurations available to the two adjacent spins

σi and σi+1. The matrix element T (+,−) marks for instance the Boltzmann’s factor to

13
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be obtained from Eq. (2.11) by considering the particular spin configuration σi = +1 and

σi+1 = −1. Accordingly, each row in the matrix T (σi, σi+1) accounts for spin states of the

former spin σi (in other words, by changing a row one changes a spin state of the former

spin σi), while each column stands for spin states of the latter spin σi+1 (by changing a

column one changes a spin state of the latter spin σi+1). Note furthermore that the spin

variable σ2 enters in the first expression T (σ1, σ2) as the latter spin, while in the second

expression T (σ2, σ3) it acts as the former spin. Consequently, the summation over spin

states of the spin σ2 changes the first expression T (σ1, σ2) to the one-by-two (row) matrix

and the second expression T (σ2, σ3) to the two-by-one (column) matrix. It can be easily

verified that the summation over spin configurations of the spin σ2 is then equivalent to a

matrix multiplication between the row matrix T (σ1, σ2) and the column matrix T (σ2, σ3)

∑

σ2=±1

T (σ1, σ2)T (σ2, σ3) =

(

exp
[

βJσ1 + βH
2

(σ1 + 1)
]

exp
[

−βJσ1 + βH
2

(σ1 − 1)
]

)







exp
[

βJσ3 + βH
2

(σ3 + 1)
]

exp
[

−βJσ3 + βH
2

(σ3 − 1)
]





 (2.15)

= exp
[βH

2
(σ1 + σ3)

]{

exp[βJ(σ1 + σ3) + βH] + exp[−βJ(σ1 + σ3) − βH]
}

.

As one can see, the final expression (2.15) obtained from the matrix product is indeed

consistent with the result (2.13) acquired by a straightforward summation. Besides, this

final expression might be considered as some two-by-two matrix T 2, the elements of which

depend on the spins σ1 and σ3 through Eq. (2.15)

∑

σ2=±1

T (σ1, σ2)T (σ2, σ3) = T 2(σ1, σ3). (2.16)

Accordingly, the summations over spin states of the spins σ2, σ3, . . . , σN can be regarded

as successive matrix multiplications yielding

Z =
∑

σ1=±1

∑

σ2=±1

. . .
∑

σN=±1

T (σ1, σ2)T (σ2, σ3) . . . T (σi, σi+1) . . . T (σN , σ1)

=
∑

σ1=±1

∑

σ3=±1

. . .
∑

σN=±1

T 2(σ1, σ3) . . . T (σi, σi+1) . . . T (σN , σ1)

=
∑

σ1=±1

TN(σ1, σ1) = TN(+, +) + TN(−,−) = Tr TN . (2.17)

14
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At each step of this procedure, the matrix multiplication by T corresponds to the sum-

mation over the spin configurations of one more spin site. That is why the matrix T is

called as the transfer matrix, namely, it transfers the dependence on the one spin to its

neighbouring spin. In addition, it can be also easily understood from Eq. (2.17) that the

last summation, which is carried out over the spin states of the spin σ1, is equivalent to

taking a trace of the matrix TN , i.e. to performing a summation over elements of the

matrix TN on its main diagonal. The problem of finding the exact solution for the closed

Ising chain thus reduces to the calculation of a trace of so far unknown matrix TN .

For calculating a trace of the matrix TN , it is very convenient to use an invariance of

the trace with respect to a cyclic permutation of the product. For instance, the product of

three square matrices A, B and C has the same trace upon following cyclic permutations

Tr(ABC)=Tr(BCA)=Tr(CAB).3 In this respect, the unitary matrix U and its inverse

U−1 (U−1U = UU−1 = 1), which convert the transfer matrix T into a diagonal form

U−1TU = Λ =







λ+ 0

0 λ−





 (2.18)

can be inserted into the latter relation (2.17) to give

Z = Tr TN = Tr(TT . . . T ) = Tr(UU−1TUU−1TU . . . U−1T )

= Tr(U−1TUU−1TU . . . U−1TU) = Tr(ΛΛ . . . Λ) = Tr ΛN . (2.19)

The above result is nothing but a similarity invariance, which means that TN and ΛN

matrices have the same trace (the trace does not depend on a particular choice of basis).

Because the matrix ΛN is actually Nth power of the diagonal matrix, thence it follows

that its diagonal elements are simply Nth power of diagonal elements of the matrix Λ

ΛN =







λN
+ 0

0 λN
−





 . (2.20)

To calculate the desired trace Tr TN = Tr ΛN = λN
+ + λN

− , it is therefore sufficient to find

elements of the diagonal matrix Λ. This eigenvalue problem can be attacked with the help

3By invoking the definition of a matrix multiplication, it is quite elementary to prove Tr(AB) =
∑

i

(AB)ii =
∑

i

∑

j

AijBji =
∑

j

∑

i

BjiAij =
∑

j

(BA)jj = Tr(BA). The cyclic property of the trace of the

product of three matrices A, B and C can be proved in a similar way.
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of unitary transformation TU = UΛ, which can be written in the matrix representation






T (+, +) T (+,−)

T (−, +) T (−,−)













a+ a−

b+ b−





 =







a+ a−

b+ b−













λ+ 0

0 λ−





 (2.21)

and is equivalent to solving the so-called characteristic (secular) equation

TV± = λ±V± ⇐⇒







T (+, +) T (+,−)

T (−, +) T (−,−)













a±

b±





 = λ±







a±

b±





 . (2.22)

Here, V± denote eigenvectors of the transfer matrix T and λ± are their corresponding

eigenvalues. Both secular equations are in fact a homogeneous system of linear equations,

which has a non-trivial solution if and only if its determinant is equal to zero

Det|T − λiI| = 0, (i ∈ {±}) (2.23)

where I is used for labeling the unit matrix of appropriate size. In this way, the eigen-

values of the transfer matrix T can be calculated without knowing explicit form of the

corresponding eigenvectors V±. As a matter of fact, both the eigenvalues can readily be

calculated by solving the determinant
∣

∣

∣

∣

∣

∣

∣

exp(βJ + βH) − λi exp(−βJ)

exp(−βJ) exp(βJ − βH) − λi

∣

∣

∣

∣

∣

∣

∣

= 0, (2.24)

which gives after straightforward calculation

λ± = exp(βJ)
[

cosh(βH) ±
√

sinh2(βH) + exp(−4βJ)
]

. (2.25)

The final expression for the partition function of the closed Ising chain in a presence of

the external magnetic field is subsequently given by

Z = Tr TN = Tr ΛN = λN
+ + λN

− . (2.26)

The equation (2.26) represents a central result of our calculation, since the whole ther-

modynamics of the closed Ising chain is being accessible from the partition function. In

addition, it can be easily proved by setting H = 0 into Eq. (2.26) that the partition

functions (2.6) and (2.26) of the open and closed Ising chains become completely identical

in the thermodynamic limit N → ∞. This is consistent with our expectations, since the
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boundary effects become negligible in the limit of infinity large system. In the thermo-

dynamic limit, the final expression for Helmholtz free energy normalized per one spin4 is

also considerably simplified by realizing that the ratio λ−

λ+
is always less than unity

F = −kBT
1

N
lim

N→∞
lnZ = −kBT

1

N
lim

N→∞
ln(λN

+ + λN
− )

= −kBT
1

N
lim

N→∞
ln







λN
+



1 +

(

λ−
λ+

)N










= −kBT ln λ+. (2.27)

According to Eq. (2.27), the Helmholtz free energy but also all other important thermo-

dynamic quantities depend solely on the largest eigenvalue λ+ of the transfer matrix. It

is noteworthy that this is even true for any other interacting many-particle system, which

can be treated within the transfer-matrix method. Thus, the problem of finding the ex-

act solution within the transfer-matrix approach is essentially the problem of finding the

largest eigenvalue of the relevant transfer matrix.

Now, let us take a closer look at thermodynamics of the closed Ising chain5. It can be

readily understood from Eq. (2.27) that the Helmholtz free energy is a smooth analytic

function of the temperature for all non-zero temperatures and thence, the exact solution

admits no phase transition. The absence of phase transition in 1D Ising model means

that this model cannot sustain a spontaneous magnetization at any finite temperature.

To clarify this issue in detail, let us derive the exact expression for the magnetization

as a function of the temperature and magnetic field. One possible route how to obtain

the total magnetization is to differentiate the Helmholtz free energy with respect to the

external magnetic field

M =

〈

N
∑

i=1

σi

〉

=
1

Z
∑

{σi}

[(

N
∑

i=1

σi

)

exp(−βH)

]

= − ∂F
∂(βH)

. (2.28)

In above, the summation
∑

{σi}
runs over all possible spin configurations. Because the closed

Ising chain is translationally invariant, the expected (averaged) values of each single-site

magnetization must be equal one to each other

m = 〈σ1〉 = 〈σ2〉 = . . . = 〈σN〉. (2.29)

4Helmholtz free energy as one of thermodynamical potentials is an extensive quantity.
5Open Ising chain has the same thermodynamic properties due to negligible boundary effects.
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With regard to this, the magnetization per one site can be obtained after straightforward

differentiation and a little bit more involved algebraic procedures from

m = − 1

N

∂F
∂(βH)

=
sinh(βH)

√

sinh2(βH) + exp(−4βJ)
. (2.30)

It is easy to prove that the magnetization is equal to zero (m = 0) whenever zero magnetic

field (H = 0) is set to Eq. (2.30) and whence it follows that there is no spontaneous

magnetization at any finite (non-zero) temperature. In accord with this statement, the

Ising chains (no matter whether closed or open) do not exhibit a phase transition towards

the spontaneously long-range ordered phase with m 6= 0 at any finite temperature. There

is nevertheless still possibility that the absolute zero temperature (T = 0 K) by itself is

a critical point at which the spontaneous long-range ordering might appear. Under the

assumption of the ferromagnetic interaction (J > 0), it can be readily verified that the

spontaneous magnetization takes its saturation values in the zero temperature limit

lim
βH→0

lim
T→0+

m(T,H) = ±1. (2.31)

and the conjecture about a critical point at zero temperature is indeed verified.

To provide a deeper insight into this rather intricate critical behaviour, it is necessary

to study the pair correlation function between two spins and its dependence on a lattice

spacing between them. For this purpose, we will need an explicit expression for both the

eigenvectors V± creating the matrices of unitary transformation. According to Eq. (2.22),

the coefficients that determine both eigenvectors V± must obey following conditions

a± = b±
T (+,−)

λ± − T (+, +)
and a± = b±

λ± − T (−,−)

T (−, +)
, (2.32)

which can be symmetrized upon their multiplication to

a2
± = b2

±
λ± − T (−,−)

λ± − T (+, +)
. (2.33)

The relationship between these coefficients can be rewritten in a more useful form by sub-

stituting the eigenvalues (2.25) and the elements of transfer matrix (2.14) into Eq. (2.33)

a2
± = b2

±
sinh(βH) ±

√

sinh2(βH) + exp(−4βJ)

− sinh(βH) ±
√

sinh2(βH) + exp(−4βJ)
. (2.34)
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For further convenience, let us introduce a new variable that is connected with the tem-

perature T , the exchange constant J and the magnetic field H by means of the relation

cotg2φ = exp(2βJ) sinh(βH), which will significantly simplify further steps in the calcu-

lation. Within the new notation, the coefficients a± and b± satisfy the relation

a2
± = −b2

±
cos 2φ ± 1

cos 2φ ∓ 1
, (2.35)

which together with the normalization condition a2
± + b2

± = 1 unambiguously determines

both the eigenvectors V±. After straightforward calculation, it is possible to derive explicit

expressions for the coefficients a± and b±

a+ = cos φ, b+ = sin φ, and a− = − sin φ, b− = cos φ. (2.36)

With the help of the coefficients (2.36), the explicit expression of the unitary matrix U

and its inverse matrix U−1 can be found following the standard algebraic procedures

U =







cos φ − sin φ

sin φ cos φ





 and U−1 =







cos φ sin φ

− sin φ cos φ





 . (2.37)

Now, the pairwise correlation 〈σiσj〉 between the two spins that reside some general ith

and jth position within the closed chain can be immediately calculated. The statistical

definition of the canonical ensemble average (1.7) allows us to calculate the correlation

〈σiσj〉 in terms of transfer matrices

〈σiσj〉 =
1

Z
∑

{σi}
σiσj exp(−βH) =

1

Z
∑

{σi}

[

T (σ1, σ2)T (σ2, σ3) . . .

T (σi−1, σi)σiT (σi, σi+1) . . . T (σj−1, σj)σjT (σj, σj+1) . . . T (σN , σ1)
]

, (2.38)

where j > i is assumed without loss of the generality. If summation over spin configura-

tions is followed by inserting the unitary and its inverse matrix to each term of the matrix

product, the two-spin correlation (2.38) can be rearranged to a more appropriate form

〈σiσj〉 =
1

ZTr
[

ST j−iSTN+i−j
]

=
1

ZTr
[

U−1SUΛj−iU−1SUΛN+i−j
]

(2.39)

using the cyclic permutation of matrices behind the relevant trace and the diagonal matrix

S with elements S(σi, σj) = σiδij (δij is Kronecker symbol), which should account for
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possible spin states of σi and σj spins. An elementary calculation gives from Eq. (2.37)

U−1SU =







cos 2φ − sin 2φ

− sin 2φ − cos 2φ





 , (2.40)

which together with the explicit expression (2.18) of the matrix Λ yields after straightfor-

ward but little bit tedious modification the following result for the two-spin correlation

〈σiσi+r〉 =
λN

+ cos2 2φ + λN−r
+ λr

− sin2 2φ + λr
+λN−r

− sin2 2φ + λN
− cos2 2φ

λN
+ + λN

−
, (2.41)

where r = i − j is used to measure a distance in between the ith and jth spins. In the

thermodynamic limit, the pairwise correlation (2.41) can be largely simplified to

〈σiσi+r〉 = cos2 2φ +

(

λ−
λ+

)r

sin2 2φ. (2.42)

It should be mentioned that the expression (2.42) represents the most general result for the

two-spin correlation, which depends on a distance r between spins, the ratio between the

smaller and the larger eigenvalue of the transfer matrix and the two expressions directly

connected with the relation cotg2φ = exp(2βJ) sinh(βH) via terms

cos 2φ =
sinh(βH)

√

sinh2(βH) + exp(−4βJ)
, sin 2φ =

exp(−2βJ)
√

sinh2(βH) + exp(−4βJ)
. (2.43)

In an absence of the external field (H = 0), the expression (2.42) for the two-spin corre-

lation further reduces, because of the validity of cos 2φ = 0 and sin 2φ = 1, to

〈σiσi+r〉 =

(

λ−
λ+

)r

= [tanh(βJ)]r. (2.44)

It can be easily understood from Eq. (2.44) that the two-spin correlation is determined by

rth power of the ratio between the smaller and larger eigenvalue of the transfer matrix.

With regard to this, the correlation between two spins exhibits a peculiar power-low decay

with the distance r in between them. In other words, the correlation between distant spins

is simply rth power of the correlation between the nearest-neighbour spins. It should be

realized that the expression tanh(βJ) is at any finite temperature always less than unity

and thus, the two-spin correlation gradually tends to zero with increasing the lattice

spacing r. Actually, in the limiting case r → ∞ it is easy to prove

lim
r→∞〈σiσi+r〉 = 0 for any T 6= 0. (2.45)
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The expression (2.45) proves in fact an absence of the long-range order at any finite

temperature and hence, the Ising chain might exhibit a spontaneous ordering just at the

absolute zero temperature. In the limit of zero temperature one actually finds

lim
r→∞ lim

T→0
〈σiσi+r〉 = 1, (2.46)

that provides another evidence of the spontaneous ordering at zero temperature. The zero

temperature can be thus considered as a very special critical point at which an onset of

spontaneous ordering appears. It is therefore of particular interest to look at the critical

exponents in the vicinity of this special critical point.

For this purpose, let us first evaluate the two-spin correlation function

Γij(r) = 〈σiσj〉 − 〈σi〉〈σj〉 = 〈σiσi+r〉 = [tanh(βJ)]r, (2.47)

which can serve as a measure of fluctuations6 to be present in the considered spin system.

Because the critical temperature is in this particular case equal to zero (Tc = 0 K), it is

much more advisable to use as a deviation of the temperature from its critical value the

quantity t = exp(−2βJ) instead of the relative difference t = (T −Tc)/Tc. It is worthwhile

to remark that the former quantity is monotonically increasing function of the temperature

with the lower bound t = 0 corresponding to the lowest possible temperature T = 0 K

(which is in fact the critical temperature) and the upper bound t = 1 corresponding to

the highest possible temperature T → ∞. Therefore, the quantity t = exp(−2βJ) can be

also regarded as a new temperature variable and thus, the pair correlation function can

be rewritten in terms of this new temperature variable to

Γij(r) =
(

1 − t

1 + t

)r

. (2.48)

The comparison between Eq. (2.47) [or Eq. (2.48)] and the definition (1.12), which ex-

presses the correlation function Γij as a function of the correlation length ξ, consecutively

yields the following relationship for the correlation length

ξ = − 1

ln tanh(βJ)
=

1

ln
(

1+t
1−t

) , (2.49)

6An alternative definition of two-spin correlation function Γij(r) = 〈(σi − 〈σi〉)(σj − 〈σj〉)〉 straight-

forwardly shows its intrinsic physical meaning that lies in average value of the product of two spin

fluctuations, i.e. the product comprised of two differences between actual and averaged spin values.
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which indicates that the correlation length diverges as one approaches the zero temper-

ature. It is noteworthy that the divergence of correlation length is generally regarded as

the most important vestige that reveals the critical point. Furthermore, let us expand the

denominator of Eq. (2.49) in the vicinity of critical temperature (t = 0) into a series and

let us retain just the leading-order term of the series

ln
(

1 + t

1 − t

)

= 2t. (2.50)

By substituting the expansion (2.50) to Eq. (2.49) one obtains

ξ = (2t)−1, (2.51)

which allows us to identify the critical exponent of the correlation length when comparing

the resultant expression (2.51) with the definition (1.17) of this critical index. Whence it

follows that the critical exponent of correlation length is equal to unity (ν = 1) in the Ising

chain. Similarly, the relation (2.48) can be utilized to determine the critical exponent η

for the correlation function. According to Eq. (2.48), the correlation function becomes

constant precisely at the critical point (tc = 0) and so, it is completely independent

of the lattice spacing r between the spins. In this respect, the relation (1.13) predicts

for the critical exponent of correlation function another simple relation η = 1. Even

although critical exponents pertinent to other thermodynamic quantities (such as the

magnetization, susceptibility or specific heat) could be obtained in a similar way, it is

much more convenient to use the idea of the two-exponent scaling to determine their

explicit values. The total set of scaling relations (1.18)-(1.22) then demands the following

values of critical exponents

η = 1, ν = ν ′ = 1, α = α′ = 1, γ = γ′ = 1, β = 0, δ = ∞. (2.52)

For simplicity, we will merely provide an independent check of the last two critical expo-

nents β and δ describing the behaviour of the magnetization near the critical temperature.

For later convenience, Eq. (2.30) will be firstly rewritten in terms of the reduced temper-

ature t = exp(−2βJ) and the reduced magnetic field h = βH to

m =
sinh(h)

√

sinh2(h) + t2
. (2.53)
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Furthermore, the expression (2.53) should be simplified under the assumption of the small

magnetic field (|h| ≪ 1) to

m =
h√

h2 + t2
. (2.54)

It is quite obvious from Eq. (2.54) that the magnetization tends in the limiting case to

lim
h→0

lim
t→0+

m(t, h) = ±1, (2.55)

which gives in compliance with Eq. (1.15) both the critical exponents of the magnetization.

As a matter of fact, it directly follows from Eqs. (1.15) and (2.55) that the critical exponent

β determining disappearance of the spontaneous magnetization upon heating must be

equal to zero (β = 0), while the critical exponent δ that determines how steeply the

magnetization increases in response to the rising magnetic field precisely at the critical

temperature is given by δ = ∞ (βδ = 1).

Exercises

1. By imposing the periodic boundary condition SN+1 ≡ S1, the 1D Blume-Emery-

Griffiths (BEG) model [3] is described through the following spin Hamiltonian

H = −J
N
∑

i=1

SiSi+1 − D
N
∑

i=1

S2
i − Q

N
∑

i=1

S2
i S

2
i+1,

where Si = ±1, 0 and the parameters D and Q denote the uniaxial single-ion anisotropy

and biquadratic interaction, respectively. Write the transfer matrix for BEG model,

diagonalize it and find its largest eigenvalue. Express the partition function and the

Helmholtz free energy in terms of the largest eigenvalue.

2. Calculate the reduced magnetization of the closed Ising chain using

m = 〈σi〉 = 1
Z
∑

{σi}
σi exp(−βH) and verify the validity of Eq. (2.30).

3. Calculate the isothermal susceptibility for the closed Ising chain using χT =
(

∂m
∂H

)

T
.

4. Calculate the internal energy U for the closed Ising chain using Eq. (1.3).

5. Calculate the entropy S for the closed Ising chain using Eq. (1.4).

6. Calculate the specific heat for the closed Ising chain using CH = T
(

∂S
∂T

)

H
.
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2.3 Spin-Peierls Phase Transition

By adopting the formalism of the transfer-matrix method, it is also of particular interest

to search for the structural spin-Peierls transition, which relates to a magnetoelastic phase

transition driven by the spin-lattice coupling (dimerization). The spin-Peierls transition

is actually a simple structural phase transition of the type distorted vs. undistorted chain

resulting from the spin-lattice interaction. The simplest 1D Ising model, in which the

spin-lattice coupling is restricted just to a single-phonon mode of the lattice amenable to

harmonic vibrations, has been proposed by Mijatovič, Miloševič and Urumov [4]. In what

follows, we shall closely follow the accurate treatment developed by these authors.

Consider the closed Ising chain consisting of N magnetic particles (the periodic bound-

ary condition is imposed by the constraint (N + 1) ≡ 1), whereas each of the magnetic

particles has the same mass M as well as the same spin σ = 1
2
. Taking into consideration

both the magnetic and the elastic energy of the closed Ising chain, the total Hamiltonian

can be written as a sum of both these contributions

H = Hspin + Hlattice, (2.56)

where the former part

Hspin = −
N
∑

l=1

Jl,l+1σlσl+1, (2.57)

accounts for the magnetic energy bearing a relation to the exchange interaction between

the nearest-neighbour Ising spins, while the latter part

Hlattice =
1

2M

N
∑

l=1

p2
l +

1

2
Mω2

N
∑

l=1

(ul+1 − ul)
2, (2.58)

corresponds to the elastic energy of longitudinal lattice vibrations described within the

usual harmonic approximation; pl marks the momentum of the lth particle, ul denotes

its deviation from the equilibrium position x0
l and ω is a characteristic angular frequency

of the lattice vibration. It is quite apparent from Eq. (2.57) that the coupling constant

Jl,l+1 of the nearest-neighbour Ising interaction depends on a relative distance between

the nearest-neighbouring particles and in the consequence of that, it can be expanded

into a series in terms of the particle displacement. Assuming only small lattice distortions
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(harmonic approximation) and retaining just first two terms from this expansion relates

the exchange constant Jl,l+1 to a relative distance between the lth and (l + 1)st particles

Jl,l+1 ≡ Jul+1−ul
= J0 + J1(ul+1 − ul). (2.59)

Next, it is convenient to utilize the Fourier representation of the displacement operator

ul =
∑

q

1√
NM

exp(iqx0
l )Qq (2.60)

and to rewrite the total Hamiltonian (2.56) by introducing the usual creation b+
q and

annihilation bq operators to

H = −J0

N
∑

l=1

σlσl+1 −
J1

4

N
∑

l=1

∑

q

[1 − exp(iqa)] exp(iqx0
l )[bq + b+

−q]σlσl+1

+
∑

q

ω(q)b+
q bq. (2.61)

Here, ω(q) = Ω0

√

sin(qa/2) and a denotes the undistorted lattice spacing. For simplicity,

we shall further suppose just the single-phonon mode with the angular frequency ω0 =

ω(π/a). Under this assumption, the total Hamiltonian (2.61) can be further simplified by

substituting the lattice distortion parameter ∆ for the averaged creation and annihilation

operators (∆ = 〈b+
q 〉 = 〈bq〉)

H = Nω0∆
2 −

N
∑

l=1

[J0 + (−1)lJ1∆]σlσl+1. (2.62)

The above effective spin Hamiltonian describes the uncoupled Ising chain interacting with

a single macroscopically occupied phonon mode with the frequency ω0.

It can be readily understood from Eq. (2.62) that the spin-phonon coupling can under

certain conditions lead to the bond alternation, which is further reflected in the alternating

part of the nearest-neighbour exchange interaction. As a matter of fact, the exchange

constant J0 describing the interaction between the nearest-neighbour Ising spins of the

undistorted chain changes upon the lattice distortion to a sequence of the alternating

exchange interactions J− = J0−J1∆ and J+ = J0+J1∆. It should be mentioned, however,

that this occurs just when the gain of magnetic energy resulting from the dimerization

(i.e. the alternation of the exchange constants) exceeds an increase of the elastic energy

associated with the lattice distortion, otherwise there is no distortion and ∆ = 0. Owing
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to this fact, the parameter of lattice distortion ∆ must be obtained in a self-consistent

manner by minimizing the overall Helmholtz free energy in order to ascertain whether the

regularly spaced closed Ising chain becomes unstable with respect to a static dimerization.

To attack the problem of finding of the Helmholtz free energy, let us substitute the total

Hamiltonian (2.62) to a statistical definition of the partition function (1.2)

Z = exp(−βNω0∆
2)

∑

σ1=±1

∑

σ2=±1

. . .
∑

σN=±1

N
∏

l=1

exp
{

β
[

J0 + (−1)lJ1∆
]

σlσl+1

}

. (2.63)

The above equation can be also rewritten by defining transfer matrices

T±(σl, σl+1) = exp(βJ±σlσl+1), with J± = J0 ± J1∆ (2.64)

into the following form

Z = exp(−βNω0∆
2)

∑

σ1=±1

∑

σ2=±1

. . .
∑

σN=±1

N/2
∏

l=1

T−(σ2l−1, σ2l)T+(σ2l, σ2l+1). (2.65)

At this stage, let us firstly perform the summation over all possible spin configurations

of the Ising spins σ2l residing even lattice positions. Apparently, this kind of summation

is equivalent to multiplying each couple of the side-by-side standing transfer matrices

T−(σ2l−1, σ2l) and T+(σ2l, σ2l+1) and thereupon, this matrix product leads to a new trans-

fer matrix T−T+(σ2l−1, σ2l+1) depending solely on the Ising spins from odd lattice sites.

The subsequent summation performed over spin configurations of the Ising spins from the

odd lattice positions (except the first one) can be thereby regarded as a successive matrix

multiplications between the new transfer matrices T−T+(σ2l−1, σ2l+1) and the last sum-

mation of taking trace of the result of this matrix product. In this respect, the partition

function of the model under investigation can be calculated from

Z = exp(−βNω0∆
2)Tr(T−T+)

N
2 . (2.66)

Due to an invariance of the trace, it is sufficient to calculate the relevant trace of the new

transfer matrix T−T+(σ2l−1, σ2l+1) in its diagonal form. For this purpose, let us explicitly

evaluate the matrix elements of the new transfer matrix T−T+(σ2l−1, σ2l+1)

T−T+ =







2 cosh(2βJ0) 2 cosh(2βJ1∆)

2 cosh(2βJ1∆) 2 cosh(2βJ0)





 . (2.67)
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Eigenvalues of the above matrix can be straightforwardly obtained following the same

approach as described in the preceding part, actually, one readily finds after some algebra

λ± = 2 cosh(2βJ0) ± 2 cosh(2βJ1∆). (2.68)

Using the eigenvalues (2.68), the partition function becomes

Z = exp(−βNω0∆
2)(λ

N
2

+ + λ
N
2

− ). (2.69)

and according to this, the Helmholtz free energy reduced per one Ising spin immediately

follows from the exact result (2.69) and the definition (1.4). In the thermodynamic limit

F = ω0∆
2 − kBT

2
ln
[

2 cosh(2βJ0) + 2 cosh(2βJ1∆)
]

. (2.70)

Now, let us proceed to a discussion of the critical phenomena that might possibly

occur in the investigated model system. It is worthwhile to recall that the closed Ising

chain cannot sustain the spontaneous magnetic ordering at any non-zero temperature and

thus, the possible phase transition could merely occur due to a static distortion arising

from the spin-lattice coupling. With regard to this, the parameter ∆ describing the

lattice distortion should be considered as a possible order parameter determining whether

the lattice distortion actually emerges or not. As we have already mentioned earlier,

the precise value of the parameter ∆ must be obtained from a self-consistent equation

minimizing the Helmholtz free energy (2.70) in order to ensure energetic stability of the

system. Hence, we adopt the parameter ∆ as the order parameter and find the extremal

(minimum) value of the Helmholtz free energy by differentiating it with respect to the

distortion parameter

∂F
∂∆

= 0 ⇐⇒ ω0∆ =
J1

2

sinh(2βJ1∆)

cosh(2βJ1∆) + cosh(2βJ0)
. (2.71)

By introducing a new set of scaled variables ∆′, J ′
0 and T ′

∆′ =
ω0

J1

∆, J ′
0 =

ω0

J1

J0

J1

, and T ′ =
ω0

J1

kBT

J1

, (2.72)

it is useful to rewrite Eq. (2.71) to a more convenient form

∆′ =
1

2

sinh(2∆′/T ′)

cosh(2∆′/T ′) + cosh(2J ′
0/T

′)
. (2.73)
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In the zero temperature limit, it can be readily verified from Eq. (2.73) that there is no

distortion whenever |J1| <
√

2ω0|J0|, since the distortion parameter becomes zero ∆′ = 0

(or equivalently ∆ = 0) in this range of parameters. On the other hand, the distortion

parameter becomes non-zero ∆′ = 1
2

[or ∆ = J1/(2ω0)] as long as |J1| >
√

2ω0|J0|.
This ground-state analysis shows that the regularly spaced Ising chain becomes unstable

with respect to the static dimerization (spin-Peierls instability) just when an increase

of the exchange constant induced by the lattice distortion, which is represented by the

interaction parameter J1, is greater than a square root of the product of the equilibrium

exchange constant J0, the angular frequency ω0 and the factor 2.

Let us turn our attention to a detailed analysis of the critical phenomena at non-

zero temperatures. It is quite reasonable to expect that the distortion parameter de-

creases upon the temperature rise in the parameter space, where the spin-Peierls insta-

bility emerges in the ground state. In the consequence of that, the dimerization should

completely vanish above a certain (critical) temperature and it is therefore of particular

interest to investigate this kind of critical behaviour. For simplicity, the Landau theory

of phase transitions will be applied here to locate critical points of continuous (second-

order) transitions and owing to this fact, the Helmholtz free energy (2.70) must be initially

expanded in terms of the lattice distortion parameter

F = A + B∆2 + C∆4 + D∆6 + . . . , (2.74)

where

A ≡ F(∆ = 0) = −kBT

2
ln 2 − kBT

2
ln[1 + cosh(2βJ0)], (2.75)

B ≡
(

∂2F
∂∆2

)

∆=0

= 2ω0 −
2βJ2

1

1 + cosh(2βJ0)
(2.76)

C ≡
(

∂4F
∂∆4

)

∆=0

= −8β3J4
1

cosh2(2βJ0) − cosh(2βJ0) − 2

[1 + cosh(2βJ0)]3
. (2.77)

In the spirit of the Landau theory of phase transitions, the critical points of second-

order phase transitions can be located from the equality B = 0 whenever the stability

condition C > 0 is fulfilled. On the other hand, the locus of a tricritical point is given

by the requirements B = 0, C = 0 and the stability condition D > 0. According to this,

28



2.3 Spin-Peierls Phase Transition 2 1D ISING MODEL

the critical condition determining the critical temperature of continuous structural phase

transitions can be transcribed in terms of the reduced variables to

B(Tc) = 0 ⇐⇒ T ′
c = [1 + cosh(2J ′

0/T
′
c)]

−1
, (2.78)

which gives after some algebraic manipulations the following critical condition

J ′
0 =

T ′
c

2
ln





1 − T ′
c ±

√

1 − 2T ′
c

T ′
c



 . (2.79)

It can be easily proved that the sign ambiguity of Eq. (2.79) does not affect the critical

temperature by itself, but it solely determines a sign of the interaction parameter J ′
0.

Indeed, few lines calculation yields an equivalence between Eq. (2.79) and

|J ′
0| =

T ′
c

2
ln





1 − T ′
c +

√

1 − 2T ′
c

T ′
c



 . (2.80)

In addition, the tricritical point is given by the conditions

B(Tt) = 0 ⇐⇒ T ′
t =

[

1 + cosh(2J ′
0/T

′
t)
]−1

, (2.81)

C(Tt) = 0 ⇐⇒ cosh2(2J ′
0/T

′
t) − cosh(2J ′

0/T
′
t) = 2. (2.82)

It can be readily shown that the latter condition is equivalent to

T ′
t

|J ′
0|

=
kBTt

|J0|
=

2

ln(2 +
√

3)
, (2.83)

which in conjunction with the former condition determines the locus of tricritical point

T ′
t =

kBTt

J1

ω0

J1

=
1

3
and |J ′

0| =
|J0|
J1

ω0

J1

=
1

6
ln(2 +

√
3). (2.84)

The complete phase diagram is shown in the J ′
0-T

′ plane in Fig. 1a. In this figure, the

lines of continuous (discontinuous) structural phase transitions between the distorted and

undistorted spin chain are depicted as solid (broken) curves, while the circled point locates

the tricritical point given by the coordinates (2.84). As a consequence of this, the regularly

spaced chain becomes unstable with respect to a static lattice dimerization (distortion)

inside the region bounded by both the displayed transition lines, while it does not exhibit

an instability with respect to lattice distortions out of this region. Notice that the afore-

described exact phase diagram is fully consistent also with the temperature dependence
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Figure 1: a) Phase diagram of the spin-1/2 Ising chain exhibiting the structural spin-Peierls

phase transition; b) Temperature variations of the distortion parameter ∆′ (order parameter) for

several particular cases, which include the continuous as well as discontinuous phase transitions.

of the distortion parameter ∆′, which represents the order parameter determining an ex-

tent of the lattice distortion in the model under investigation. As it can be clearly seen

from Fig. 1b, the model system actually exhibits the continuous (discontinuous) phase

transitions below (above) the tricritical point.

2.4 Open Ising Chain with Second-Neighbour Coupling

Only pairwise interactions between nearest-neighbour spins are usually taken into account

within the standard Ising model insomuch that the exchange interaction decays very

rapidly with a distance in between the spins. However, it should be also mentioned

that the spin-spin interactions between more distant spins can under certain conditions

significantly affect the overall magnetic behaviour especially when the exchange pathway

between nearest-neighbour spins becomes rather inefficient. In this part, we shall therefore

focus on another interesting exactly solvable 1D Ising model, which allows to account for

the interaction between more distant spins. Suppose for instance the open Ising chain in

an absence of the external magnetic field given by the Hamiltonian

H = −J1

N−1
∑

i=1

σiσi+1 − J2

N−2
∑

i=1

σiσi+2, (2.85)
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in which the parameter J1 labels a pairwise interaction between the nearest-neighbouring

spins, whereas the parameter J2 stands for a pairwise interaction between the next-nearest-

neighbouring spins. Substitution of the Hamiltonian (2.85) into the canonical definition

of the partition function (1.2) straightforwardly leads to the following relationship

QN =
∑

σ1=±1

∑

σ2=±1

. . .
∑

σN=±1

exp
(

βJ1

N−1
∑

i=1

σiσi+1 + βJ2

N−2
∑

i=1

σiσi+2

)

. (2.86)

By adopting the Dobson’s trick [5], which consists in performing the transformation of a

set of the two-state Ising variables {σi} with possible values ±1 to a new set of two-state

Ising variables {ti} with the same values ±1

t0 = σ1 and ti = σiσi+1 (i = 1, 2, . . . , N − 1), (2.87)

it is possible to transform the open Ising chain with the nearest- and next-nearest-

neighbour interactions to the open Ising chain with the nearest-neighbour interaction

only, but in a presence of some effective magnetic field. It is noteworthy that the trans-

formation (2.87) can be uniquely inverted because of the trivial identity σ2
i ≡ 1 so that

σi = σiσi−1σi−1σi−2 . . . σ2σ1σ1 = ti−1ti−2 . . . t1t0 =
i−1
∏

j=0

tj. (2.88)

Owing to this fact, to each possible spin configuration from a set of the Ising spin variables

{σi} there corresponds one and just one configuration from a set of new Ising spin variables

{ti} and vice versa. In other words, there exists the one-to-one correspondence between

configurations given by the old and new Ising spin variables, respectively. Note that this

one-to-one correspondence ensures an equivalence between the models expressed via the

old and new Ising spin variables. Hence, the partition function (2.86) can be rewritten in

terms of the new Ising spin variables {ti} to

QN =
∑

t0=±1

∑

t1=±1

∑

t2=±1

. . .
∑

tN=±1

exp
(

βJ1

N−1
∑

i=1

ti + βJ2

N−2
∑

i=1

titi+1

)

= 2
∑

t1=±1

∑

t2=±1

. . .
∑

tN=±1

exp
(

βJ1

N−1
∑

i=1

ti + βJ2

N−2
∑

i=1

titi+1

)

, (2.89)

where we have used the property σiσi+2 = σiσ
2
i+1σi+2 = titi+1 and the factor 2 arises from

the summation over spin states of the spin t0 not included in the other terms. Apart from

the factor 2 in front of the summations, the latter relation (2.89) represents the partition
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Figure 2: The schematic representation of the spin-1/2 Ising model on the two-leg ladder.

function of the open Ising chain with in total (N−1) spins, the effective nearest-neighbour

coupling Jeff = J2 and the effective magnetic field Heff = J1. In this respect, the partition

function of the open Ising chain with the nearest- and next-nearest-neighbour couplings

J1 and J2, respectively, can be calculated from the partition function of the open Ising

chain with the nearest-neighbour coupling Jeff and the effective magnetic field Heff

QN = 2ZN−1(β, Jeff ≡ J2, Heff ≡ J1). (2.90)

Since the boundary effects become unimportant in the thermodynamic limit, the parti-

tion function of the open Ising chain with the next-nearest-neighbour interaction can be

transcribed also from the well-known result (2.26) for the partition function of the closed

Ising chain. This allows simple calculation of the Helmholtz free energy

F = −kBT ln λ+ = −J2 − kBT ln
[

cosh(βJ1) +
√

sinh2(βJ1) + exp(−4βJ2)
]

(2.91)

and also all other important thermodynamical-statistical quantities that follow straight-

forwardly from here onward.

Exercises

1. By imposing the periodic boundary conditions σ2N+1 ≡ σ1 and σ2N+2 ≡ σ2, the spin-

1/2 Ising model on the two-leg ladder (two coupled spin chains shown in Fig. 2) can be

defined through the following spin Hamiltonian

H = −J1

2N
∑

i=1

σiσi+2 − J2

N
∑

i=1

σ2i−1σ2i,

where J1 and J2 are intra- and inter-chain coupling constants, respectively. Write the

transfer matrix for this ladder model, diagonalize it and find its largest eigenvalue. Express

the partition function and Helmholtz free energy in terms the largest eigenvalue. Verify

that all results reduce to the ones of the simple spin-1/2 Ising chain in the J2 → 0 limit.
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2. Explore the temperature dependence of the specific heat for the spin-1/2 Ising chain

exhibiting the spin-Peierls phase transition. How this dependence changes at the tricritical

point?

3. Generalize the exact solution for the spin-1/2 Ising chain exhibiting the spin-Peierls

phase transition to the case with the non-zero magnetic field. How the character of

structural phase transitions changes under the inclusion of the external magnetic field?

3. Examine whether the spin-1 Ising chain exhibits the similar structural (spin-Peierls)

transition as its spin-1/2 analogue. Does the spin-1 Ising model exhibit a tricritical point?

33



3 2D ISING MODEL

3 2D Ising Model

2D Ising model is perhaps the simplest microscopic model, which has been solved exactly

and it simultaneously exhibits non-trivial phase transitions and critical phenomena. It

should be noted, nevertheless, that it took almost two decades of intensive efforts since

Ernst Ising (1925) derived exact results for 1D version of his model [6] until the complete

closed-form exact solution has been found for its 2D analogue as well [1]. It is worthwhile

to remark that a wrong Ising’s conclusion about the absence of phase transitions in any

(even higher-dimensional) Ising model was firstly questioned by R. Peierls (1936) [7], who

argued that 2D Ising model must necessarily exhibit a phase transition towards the spon-

taneously ordered phase at sufficiently low but non-zero temperature7. H. A. Kramers and

G. H. Wannier (1941) were the first who exactly confirmed Peierls’ conjecture by mak-

ing the fundamental discovery of a duality in the low- and high-temperature expansion

of the partition function [2]. As a matter of fact, the self-dual property of Ising square

lattice enables to locate the critical temperature of its order-disorder phase transition in

a relative straightforward manner. The subsequent Onsager’s (1944) exact solution was

an additional breakthrough in the statistical physics by virtue of that 2D Ising model

became the most famous paradigm of exactly solved model that exhibits a non-trivial

phase transition at non-zero temperature. As it has been already mentioned in the in-

troductory part, the statistical physics took a giant step forward when Onsager’s exact

solution proved an existence of the phase transition resulting merely from the short-range

forces represented by the nearest-neighbour spin-spin interaction only. In this section,

we will provide several rigorous results for 2D Ising model available even after modest

calculation.

3.1 Dual lattice and dual transformation

Once again, let us begin with a fairy simple microscopic Hamiltonian describing Ising

model on arbitrary 2D lattice in an absence of the term incorporating the effect of external

7Peierls’ original proof contained a series error, which was fully corrected by R. B. Griffiths [8] in 1964.
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3.1 Dual lattice and dual transformation 3 2D ISING MODEL

magnetic field

H = −J
NB
∑

(i,j)

σiσj. (3.1)

Above, σi = ±1 represents Ising spin variable located at ith lattice site and the summa-

tion is carried out over all nearest-neighbour spin pairs on a lattice. Assuming that N is

a total number of lattice sites and z is being its coordination number (number of nearest

neighbours), then, there is in total NB = Nz/2 pairs of nearest-neighbour spins when

boundary effects are neglected (i.e. in thermodynamic limit). Each line (bond), which

connects two adjacent spins on a lattice, can be thus regarded as a schematic represen-

tation of the exchange interaction J between the nearest-neighbour spins. As usual, the

central issue of our approach is to calculate the configurational partition function

Z =
∑

{σi}
exp(−βH), (3.2)

where the suffix {σi} denotes a summation over all possible spin configurations on a given

lattice (there is in total 2N distinct spin configurations and N tends to infinity in the

thermodynamic limit). First, let us rewrite Hamiltonian (3.1) to the form

H = −NBJ + J
NB
∑

(i,j)

(1 − σiσj). (3.3)

Since the canonical ensemble average of Hamiltonian readily represents the internal energy

(U = 〈H〉), it is easy to find the following physical interpretation of the Hamiltonian (3.3).

Each couple of unlike oriented adjacent spins contributes to the sum that appears on the

right-hand-side of Eq. (3.3) by the energy gain 2J , while each couple of aligned adjacent

spins does not contribute to this sum at all. With respect to this, the internal energy of

a wholly ordered spin system (all spins are either ’up’ or ’down’) acquires its minimum

value U = −NBJ under the assumption J > 0. By substituting the Hamiltonian (3.3)

into Eq. (3.2), one gets following expression for the partition function

Z = exp(βJNB)
∑

{σi}
exp(−n2βJ), (3.4)

where n stands for the total number of unaligned adjacent spin pairs within each spin con-

figuration. Obviously, the summation on the right-hand-side of Eq. (3.4) may in principle
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3.1 Dual lattice and dual transformation 3 2D ISING MODEL

a)                                                      b)

Figure 3: Two pairs of dual lattices: a) self-dual square lattices; b) hexagonal and triangular

dual lattices. Solid lines and solid circles label edges and vertices of original lattices, while

broken lines and empty circles stand for edges and vertices of their dual lattices, respectively.

contain just different powers of the expression exp(−2βJ). In the limit of zero tempera-

ture (T → 0), the expression exp(−2βJ) tends to zero and thence, the power expansion

into a series
∑

n
exp(−n2βJ) gives very valuable estimate of the partition function in the

limit of sufficiently low temperatures (so-called low-temperature series expansion).

It is possible to find a simple geometric interpretation of each term emerging in the

aforementioned power series by introducing the idea of a dual lattice. For this reason,

let us introduce a basic terminology of the graph theory, where each site of a lattice is

called as a vertex, while each bond (line) connecting the nearest-neighbour sites (vertices)

is called as an edge. Further, an interior of each elementary polygon delimited by edges

is a face and an ensemble of vertices and edges is called a full lattice graph. Vertices

of a dual lattice are simply obtained by situating them in the middle of each face of

the original lattice. The vertices situated at adjacent faces, which share a common edge

on the original lattice, then represent the nearest-neighbour vertices of the dual lattice.

Edges of the dual lattice are obtained by connecting each couple of adjacent vertices of

the dual lattice. For illustrative purposes, Fig. 3 shows two original lattices – square

and hexagonal – and their corresponding dual lattices. The bonds of original lattices are

displayed as solid lines, while the bonds of their dual lattices are depicted as broken lines.

As one can see, the square lattice is a self-dual, i.e. the dual lattice to a square lattice

is again a square lattice. Contrary to this, the triangular lattice is a dual lattice to the
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3.1 Dual lattice and dual transformation 3 2D ISING MODEL
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Figure 4: A particular spin configuration on a square lattice, whose vertices and edges are not

drawn for clarity. The plus (minus) sign at ith lattice site corresponds to the spin state σi = +1

(σi = −1). The system of solid and broken lines unambiguously determines the corresponding

polygon line graph at the dual square lattice (for details see the text).

hexagonal lattice and vice versa. Remembering that N and NB is the total number of

vertices and edges of the original lattice, respectively, thence it follows that NB is at the

same time the total number of edges of the dual lattice as well (each bond of the dual

lattice intersects one and just one bond of the original lattice). If ND denotes the total

number of vertices of the dual lattice, ND is in turn also the total number of faces of the

original lattice (each face of the original lattice involves one and just one vertex of the

dual lattice). Euler’s relation for planar graphs8 then relates the total number of sites of

the original and dual lattices with the total number of edges9

N + ND = NB. (3.5)

Suppose now some random arrangement of ’up’ and ’down’ spins on the original lattice,

i.e. some particular spin configuration on a whole lattice as displayed in Fig. 4 (the bonds

connecting adjacent spins on the original lattice are not drawn for clarity). If the pairs of

adjacent spins are unaligned, then draw solid lines between them, otherwise draw broken

lines between the pairs of aligned spins. The system of sites, solid and broken lines on the

dual lattice creates a configurational graph, which is a subgraph of the full dual lattice

8The planar graph is a graph, which can be embedded in the plane so that no edges intersect.
9The right-hand-side of Eq. (3.5) is in fact either NB + 2 or NB + 1 for any planar graph, however, in

the thermodynamic limit one can use NB instead of them.
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3.1 Dual lattice and dual transformation 3 2D ISING MODEL

graph. The most fundamental property of the configurational graph is that the mutual

interchange of each adjacent spins either does not affect the configurational graph, or it

causes an even number of changes. The total number of solid and broken lines incident

at each site of the dual lattice must be therefore either even or zero. This implies that

solid (broken) lines of each configurational graph form a system of closed polygons. So,

the configurational graph thus represents a certain kind of polygon line graph. Another

important property of the polygon line graph is that the reversal of all spins does not

change the configurational graph. It means that two different spin configurations (one is

being obtained from the other by reversing all spins) correspond just to one configurational

polygon line graph due to invariance σi → −σi (for each i). The partition function of the

planar Ising model can be therefore expressed as

Z = 2 exp(βJNB)
∑

p.g.

exp(−n2βJ), (3.6)

where the summation is now performed over all possible polygon subgraphs on a 2D

lattice, n denotes the total number of solid lines within each polygon subgraph and the

factor 2 comes from the two-to-one mapping between spin and polygon configurations.

Let us take a closer look at another interesting property of the partition function (3.2).

By adopting the van der Waerden identity [9]

exp(βJσiσj) = cosh(βJ) + σiσj sinh(βJ) = cosh(βJ)[1 + σiσj tanh(βJ)] (3.7)

and substituting it into Eq. (3.2) one obtains

Z = [cosh(βJ)]NB
∑

{σi}

∏

(i,j)

[1 + σiσj tanh(βJ)]. (3.8)

The product on the right-hand-side of Eq. (3.8) involves in total NB terms (one for each

bond), which give after formal multiplication a sum of in total 2NB terms. However, many

terms eventually vanish by performing summation over all available spin configurations.

For instance, it can be readily proved that all linear terms of the type σiσj tanh(βJ) will

finally disappear when summing over spin states of the spin σi or σj. The condition, which

ensures that the relevant term makes a non-zero contribution to the partition function,

can be simply guessed from the validity of the trivial spin identity σ2
i = 1. According to

this, all non-zero terms must necessarily consist of spin variables, which enter into these
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3.1 Dual lattice and dual transformation 3 2D ISING MODEL

expressions either even number of times or do not enter into these terms at all. The

simplest non-vanishing term for the Ising square lattice is evidently

(σiσj)(σjσk)(σkσl)(σlσi) tanh4(βJ) = σ2
i σ

2
j σ

2
kσ

2
l tanh4(βJ) = tanh4(βJ), (3.9)

which is constituted by the product of four nearest-neighbour interactions (edges) form-

ing an elementary square (the simplest closed polygon) on this lattice. The summation

over spin configurations of four spins included in this term consequently gives a factor

24 tanh4(βJ), while the summation over spin states of other spins yields an additional

factor 2N−4 so that the Boltzmann’s factor 2N tanh4(βJ) is finally obtained as the con-

tribution from a single square. It is therefore not difficult to construct the following

geometric interpretation of the non-vanishing terms: edges corresponding to interactions

present in these terms must create closed polygons so that either no lines or even number

of lines meet at each vertex of the lattice. From this point of view, polygon line graphs

very similar to those described by the low-temperature series expansion give a non-zero

contribution to the partition function. With regard to this, the expression (3.8) for the

partition function can be replaced by

Z = 2N [cosh(βJ)]NB
∑

p.g.

[tanh(βJ)]n, (3.10)

where n denotes the total number of full lines constituting the particular polygon graph.

It is quite apparent that the summation on the right-hand-side of Eq. (3.10) contains just

different powers of the expression tanh(βJ). In the limit of high temperatures (T → ∞),

the expression tanh(βJ) tends to zero and whence, the power expansion into a series
∑

n
[tanh(βJ)]n gives very valuable estimate of the partition function in the limit of suffi-

ciently high temperatures (so-called high-temperature series expansion).

There is an interesting correspondence between summations to emerge in Eqs. (3.6)

and (3.10), since both of them are performed over certain sets of polygon line graphs.

The most essential difference between them consists in the fact that the summation in

Eq. (3.4) is carried out over polygon graphs on the dual lattice, while the summation in

Eq. (3.10) is performed over polygon graphs on the original lattice. It should be stressed,

however, that both the final expressions (3.4) and (3.10) for the partition function are

exact when the relevant series is performed up to an infinite order and therefore, they
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3.1 Dual lattice and dual transformation 3 2D ISING MODEL

must basically give the same result for the partition function. In the thermodynamic

limit, the summations (3.4) and (3.10) yield the same partition function provided that

exp(−2βDJ) = tanh(βJ), (3.11)

Z(ND, βDJ)

exp(βDJNB)
=

Z(N, βJ)

2N [cosh(βJ)]NB
, (3.12)

where we have introduced some reciprocal temperature βD = 1/(kBTD) of the dual lattice

and the factor 2 was omitted from the denominator on the left-hand-side of Eq. (3.12) due

to its negligible effect in the thermodynamic limit. The connection between two mutually

dual lattices (3.11) and (3.12) can also be inverted because of a symmetry in the duality

(each from a couple of the mutually dual lattices is dual one to another)

exp(−2βJ) = tanh(βDJ), (3.13)

Z(N, βJ)

exp(βJNB)
=

Z(ND, βDJ)

2ND [cosh(βDJ)]NB
. (3.14)

With the help of Eqs. (3.11) and (3.12) [or equivalently Eqs. (3.13) and (3.14)], it is also

possible to write this so-called dual transformation even in a symmetric form as would

be expected from the symmetrical nature of the duality. The relation (3.11) gives after

straightforward calculation

sinh(2βJ) sinh(2βDJ) = 1, (3.15)

while the expression (3.12) can be modified by regarding the equality between partition

functions [Z(N, βJ) = Z(ND, βDJ)], Eqs. (3.11), (3.15) and Euler’s relation (3.5) to

2N [cosh(βJ)]NB exp(−βDJNB) = 2N [cosh(βJ)]NB [tanh(βJ)]
NB
2

= 2N [sinh(βJ)]
NB
2 [cosh(βJ)]

NB
2

= 2N−NB
2 [sinh(2βJ)]

NB
2 = 2

N−ND
2 [sinh(2βJ)]

N+ND
2

=
[2 sinh(2βJ)]

N
2

[2 sinh(2βDJ)]
ND
2

= 1. (3.16)

By combining Eq. (3.16) with the relation (3.12), one readily gains another symmetric

relationship between the partition functions expressed in terms of the high-temperature

series expansion on the original lattice and the low-temperature series expansion on its

dual lattice

Z(N, βJ)

[2 sinh(2βJ)]
N
2

=
Z(ND, βDJ)

[2 sinh(2βDJ)]
ND
2

. (3.17)
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The existence of an equivalence between the low- and high-temperature series expansions

reflects the fundamental property of the partition function, namely, its symmetry with

respect to the low and high temperatures. This symmetry means, among other mat-

ters, that the partition function at some lower temperature can always be mapped on

the equivalent partition function at some certain higher temperature. This mapping is

called as the dual transformation and the dual lattices are actually connected one to each

other by means of the dual transformation. In this respect, the dual lattices are topolog-

ical representations of the dual transformation and consequently, one says that the dual

transformation has a character of the topological transformation.

The mathematical formulation of the dual transformation connecting effective tem-

peratures of the original and its dual lattice is represented (independently of the lattice

topology) either by the couple of equivalent Eqs. (3.11) and (3.13), or, respectively, by a

single symmetrized relation (3.15). The latter relationship is especially useful for a bet-

ter understanding of the symmetry of the partition function with respect to the low and

high temperatures. It is sufficient to realize that the argument of the function sinh(2βJ)

must unavoidably decrease when the argument of the other function sinh(2βDJ) increases

in order to preserve their constant product required by the dual transformation (3.15).

This means that the partition function at some lower temperature, which is obtained

for instance from the low-temperature expansion on the dual lattice, is equivalent to the

partition function at a certain higher temperature obtained from the high-temperature

expansion on the original lattice. It is noteworthy that the dual transformation markedly

simplifies the exact enumeration of thermodynamic quantities on different lattices, since it

permits to obtain the exact solution of some quantity on arbitrary lattice merely from the

corresponding exact result for this quantity on its dual lattice. For instance, the critical

point is always accompanied by some singularity or discontinuity in the thermodynamic

variables and this non-analyticity is always somehow reflected in the partition function

as well. The mapping relation (3.17) clearly shows that the partition function of the

original lattice exhibits a non-analyticity if and only if the partition function of the dual

lattice also has a similar non-analyticity at some corresponding temperature satisfying

the duality relation (3.15). Besides, the expression (3.17) allows to calculate the partition
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function of the one of mutually dual lattices merely by substituting the corresponding

exact result for the partition function of its dual lattice.

It is worthwhile to remark that the square lattice has an extraordinary position among

2D lattices because of its self-duality. The self-dual property together with the symmetry

of the partition function with respect to the low and high temperatures is just enough for

determining the critical temperature and other thermodynamic quantities precisely at a

critical point. Under the assumption of a single critical point, the same lattice topology

ensures that critical parameters must be equal one to each other on both mutually dual

square lattices. According to the dual transformation (3.15), the critical temperature of

the spin-1/2 Ising model on the square lattice must obey the condition

sinh2(2βcJ) = 1, (3.18)

which is consistent with this value of the critical temperature

kBTc

|J | =
2

ln(1 +
√

2)
. (3.19)

It should be pointed out, however, that the temperature symmetry of the partition func-

tion does not suffice for determining critical parameters of 2D lattices like hexagonal and

triangular lattices, which are not self-dual.

3.2 Star-Triangle Transformation

The dual transformation (3.15) maps the hexagonal lattice into the triangular lattice and

vice versa and thus, it does not establishes the symmetry between the low- and high-

temperature partition function on the same lattice. However, it should be noticed that

such a relation can be established even for other (not self-dual) lattices by combining

the dual transformation (3.15) with some another transformations. The star-triangle

transformation invented by L. Onsager [1] establishes this useful mapping relationship for

the couple of dual hexagonal–triangular or Kagomé–diced lattices.

Let us consider the spin-1/2 Ising model on the hexagonal lattice. For further conve-

nience, it is advisable to divide the hexagonal lattice into two equivalent interpenetrating

triangular sublattices A and B, whose sites are diagrammatically represented in Fig. 5 by
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s
A

s
B

Jh

Jt

STT

Figure 5: The spin-1/2 Ising model on the hexagonal lattice and its relation to the equivalent

spin-1/2 Ising model on the triangular lattice. The equivalence between both models can be

established by applying the star-triangle transformation to a half of spins of hexagonal lattice.

full and empty circles, respectively. The division is made in a such way that all nearest

neighbours of a site from one sublattice (say A) belong to the other sublattice (B) and

vice versa. Owing to this fact, the summation over spin configurations of spins, which be-

long to the same sublattice, can be performed independently one from each other because

there is no direct interaction between the spins from the same sublattice. In this respect,

it is very appropriate to write the total Hamiltonian as a sum of site Hamiltonians

H =
N
∑

i∈B

Hi, (3.20)

where each site Hamiltonian Hi involves all the interaction terms associated with the ith

lattice site belonging to the sublattice B

Hi = −Jhσ
B
i (σA

j + σA
k + σA

l ). (3.21)

In above, the upper index of spin variable specifies the sublattice to which the relevant

spin belongs. By the use of Eqs. (3.20) and (3.21), the partition function of the spin-1/2

Ising model on the hexagonal lattice (1.2) can be partially factorized to the form

Zhex =
∑

{σA
j
}

N
∏

i=1

∑

σB
i

=±1

exp[βJhσ
B
i (σA

j + σA
k + σA

l )], (3.22)

where the former summation is carried out over all available spin configurations on the

sublattice A, the product is over all sites of the sublattice B and the latter summation

accounts for the spin states of one particular spin from the sublattice B. In the consequence

of that, it is adequate to consider just one particular spin site from the sublattice B and

43



3.2 Star-Triangle Transformation 3 2D ISING MODEL

to sum up over spin degrees of freedom of this site. Each spin from the sublattice B

interacts merely with its three nearest-neighbour spins from the sublattice A and hence,

this summation gives the Boltzmann’s factor

∑

σB
i

=±1

exp[βJhσ
B
i (σA

j + σA
k + σA

l )] = 2 cosh[βJh(σ
A
j + σA

k + σA
l )]

= A exp[βJt(σ
A
j σA

k + σA
k σA

l + σA
l σA

j )], (3.23)

which is appropriate for substituting by the equivalent expression provided by the star-

triangle transformation. The physical meaning of the transformation (3.23) is to remove

all the interactions associated with a central spin σB
i of the star and to replace them by

new effective interactions between three outer spins σA
j , σA

k and σA
l forming the equilateral

triangle. It is noteworthy that the star-triangle transformation is actually a set of eight

equations, which can be obtained from the mapping relation (3.23) by considering all

possible spin configurations available to three outer spins from the sublattice A. However,

the consideration of available spin configurations leads just to two independent equations,

which unambiguously determine the mapping parameters A and Jt. This self-consistency

condition yields the mapping parameters

A = 2[cosh(3βJh)]
1

4 [cosh(βJh)]
3

4 (3.24)

βJt =
1

4
ln
[cosh(3βJh)

cosh(βJh)

]

. (3.25)

The backward substitution of the transformation (3.23) into the partition function (3.22),

which is equivalent with performing the star-triangle transformation for all spins from the

sublattice B, yields an exact mapping relationship between the partition functions of the

spin-1/2 Ising model on the hexagonal and triangular lattices

Zhex(2N, βJh) = ANZtriang(N, βJt), (3.26)

whose effective temperatures are coupled together through the mapping relation (3.25).

As a result, the relation (3.25) established by the use of the star-triangle transformation

connects the partition functions of the hexagonal and triangular lattices at two different

effective temperatures in a quite similar way as it does the relation (3.15) provided by the

dual transformation. The most crucial difference consists in a profound essence of both
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mapping relations; the dual transformation is evidently of the topological origin, whereas

the star-triangle mapping is the algebraic transformation in its character.

At this stage, let us combine the dual and star-triangle transformations in order to

bring insight into the criticality of the spin-1/2 Ising model on the hexagonal and trian-

gular lattices. By employing a set of trivial identities10, the star-triangle transformation

(3.25) should be firstly rewritten as follows

exp(4βJt) =
cosh(3βJh)

cosh(βJh)
=

cosh(2βJh) cosh(βJh) + sinh(2βJh) sinh(βJh)

cosh(βJh)

= cosh(2βJh) + tanh(βJh) sinh(2βJh) = cosh(2βJh) + 2 sinh2(βJh)

= 2 cosh(2βJh) − 1. (3.27)

Furthermore, it is appropriate to combine Eq. (3.27) with one of possible representations

of the dual transformation (3.11)

exp(−2β′Jt) = tanh(β′Jh) (3.28)

with the aim to eliminate the effective temperature of the one of lattices with equivalent

partition functions. For instance, the procedure that eliminates from Eqs. (3.27) and

(3.28) the effective temperature of the triangular lattice allows to obtain the symmetrized

relationship, which connects the partition function of the spin-1/2 Ising model on the

hexagonal lattice at two different temperatures

[coth(β′Jh)]
2 = 2 cosh(2βJh) − 1

cosh(2β′Jh) + 1

cosh(2β′Jh) − 1
= 2 cosh(2βJh) − 1

cosh(2β′Jh) + 1 = [2 cosh(2βJh) − 1][cosh(2β′Jh) − 1]

cosh(2βJh) cosh(2β′Jh) − cosh(2βJh) − cosh(2β′Jh) = 0

{cosh(2βJh) − 1}{cosh(2β′Jh) − 1} = 1. (3.29)

Physically, the relationship (3.29) establishes analogous temperature symmetry of the

partition function of the spin-1/2 Ising model on the hexagonal lattice as the dual trans-

formation does for the spin-1/2 Ising model on the self-dual square lattice through the

10cosh(a ± b) = cosh a cosh b ± sinh a sinh b, cosh 2a = cosh2
a + sinh2

a, sinh 2a = 2 sinh a cosh a,

cosh2
a − sinh2

a = 1, cosh2
a = 1+cosh 2a

2
and sinh2

a = −1+cosh 2a
2

.
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relation (3.15). If there exists just an unique critical point, both temperatures connected

via the mapping relation (3.29) must necessarily meet at a critical point due to the same

reasons as it was explained in the case of square lattice. So, the critical temperature of

the spin-1/2 Ising model on the hexagonal lattice should obey the condition

[cosh(2βcJh) − 1]2 = 1, (3.30)

which is consistent with this value of the critical temperature

kBTc

|Jh|
=

2

ln(2 +
√

3)
. (3.31)

The same procedure can be repeated once more in order to obtain the critical param-

eters of the spin-1/2 Ising model on the triangular lattice. Elimination of the effective

temperature of the hexagonal lattice from Eqs. (3.27) and (3.28) yields the following sym-

metric mapping, which relates the partition function of the spin-1/2 Ising model on the

triangular lattice at two different temperatures

[exp(4βJt) − 1][exp(4β′Jt) − 1] = 4. (3.32)

The latter equation determines the critical condition of the triangular lattice

[exp(4βcJt) − 1]2 = 4, (3.33)

which locates its exact critical temperature

kBTc

Jt

=
4

ln 3
. (3.34)

It is noteworthy that the critical temperature of the spin-1/2 Ising model on the triangular

lattice (3.34) can be more easily found by substituting the critical condition of the spin-1/2

Ising model on the hexagonal lattice (3.30) to the modified star-triangle transformation

(3.27). Note that the same critical temperature is recovered in this way.

3.3 Decoration-Iteration Transformation

Another important mapping transformation, which is purely of algebraic character, rep-

resents the decoration-iteration transformation invented by I. Syozi (1951) by solving the

spin-1/2 Ising model on the Kagomé lattice [10]. In principle, the approach based on the
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Figure 6: The spin-1/2 Ising model on the hexagonal lattice, decorated hexagonal lattice and

Kagomé lattice. The equivalence between all three lattice models can be established by employ-

ing the decoration-iteration and star-triangle transformations, respectively.

decoration-iteration transformation enables to obtain an exact solution of the spin-1/2

Ising model on an arbitrary bond-decorated lattice from the corresponding exact solution

of the simple (undecorated) lattice. The term bond-decorated lattice marks such a lattice,

which can be obtained from the simple original lattice (like square, hexagonal or triangu-

lar) by placing an additional spin or a cluster of spins on the bonds of this simpler lattice.

The sites of the original lattice are then called as primary sites, while the sites arising

from the decoration procedure are called as secondary (decorating) sites. For illustration,

Fig. 6 shows the planar topology of the hexagonal lattice, the simply decorated hexago-

nal lattice and the Kagomé lattice together with the reciprocal relations, which can be

established between them by employing algebraic mapping transformations.

Let us consider initially the spin-1/2 Ising model on the decorated hexagonal lattice,

which is is shown in the middle of Fig. 6 and is given by the Hamiltonian

Hdec = −Jdec

3N
∑

(i,j)

σiµj. (3.35)

Above, σi = ±1 and µj = ±1 label Ising spin variables located at the primary and

secondary sites of the decorated hexagonal lattice, respectively, the summation runs over

all nearest-neighbour spin pairs of the lattice and the total number of primary sites is

equal to N . It is convenient to rewrite the total Hamiltonian (3.35) as a sum of bond

Hamiltonians

Hdec =
3N/2
∑

j=1

Hj, (3.36)

where each bond Hamiltonian involves all the interaction terms that include one particular
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decorating spin site

Hj = −Jdecµj(σk + σl). (3.37)

By the use of Eqs. (3.36) and (3.37), the partition function (1.2) of the spin-1/2 Ising

model on the decorated hexagonal lattice can be partially factorized to the form

Zdec =
∑

{σi}

3N/2
∏

j=1

∑

µj=±1

exp[βJdecµj(σk + σl)]. (3.38)

In the above expression, the former summation is carried out over all available spin con-

figurations on the primary sites, the product is over all secondary sites and the latter

summation accounts for the spin states of the one secondary spin occupying jth bond

of the decorated hexagonal lattice. According to Eq. (3.38), the summation over spin

degrees of freedom of the decorating sites can be performed independently one from each

other, whence it follows that this summation gives the Boltzmann’s factor

∑

µj=±1

exp[βJdecµj(σk + σl)] = 2 cosh[βJdec(σk + σl)] = B exp(βJhσkσl). (3.39)

which can be successively replaced by the equivalent expression provided by the decoration-

iteration transformation. The physical meaning of the transformation (3.39) is to remove

all interactions associated with the secondary spin µj and to substitute them by the

effective interaction between two primary spins σk and σl, which are being its nearest

neighbours. It should be emphasized that the decoration-iteration transformation (3.39)

has to satisfy the self-consistency condition, i.e. it must hold for any combination of the

spin states of the two primary Ising spins σk and σl. In this respect, the mapping relation

(3.39) is in fact a set of four equations, which can be explicitly obtained by considering

all possible spin configurations available to the two primary Ising spins. It can be readily

proved that a substitution of four possible spin configurations yields from the formula

(3.39) merely two independent equations, which determine the mapping parameters B

and βJh

B = 2
√

cosh(2βJdec), (3.40)

βJh =
1

2
ln [cosh(2βJdec)] . (3.41)
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By applying the decoration-iteration transformation to all the secondary sites, i.e. by

substituting the mapping transformation (3.39) into the partition function (3.38), one

acquires an exact mapping correspondence between the partition functions of the spin-

1/2 Ising model on the decorated hexagonal lattice and simple hexagonal lattice

Zdec(5N/2, βJdec) = B3N/2Zhex(N, βJh) (3.42)

whose effective temperatures are connected by means of the relation (3.41). It is quite

obvious from Eq. (3.42) that the decorated hexagonal lattice becomes critical if and only

if its corresponding hexagonal lattice becomes critical as well. With regard to this, it is

sufficient to substitute the exact critical temperature of the hexagonal lattice (3.31) into

Eq. (3.41) in order to locate the exact critical point of the decorated hexagonal lattice

kBTc

|Jdec|
=

2

ln(2 +
√

3 +
√

6 + 4
√

3)
. (3.43)

It is worthwhile to remark that the decoration-iteration transformation (3.39) is restricted

neither by the lattice topology nor by its spatial dimensionality and thus, it can be utilized

for obtaining the exact results for arbitrary simply decorated lattice from the known exact

solution of the corresponding undecorated lattice.

Now, it is possible to make another vital observation. The total Hamiltonian (3.35) of

the spin-1/2 Ising model on the decorated hexagonal lattice can be also formally written

as a sum of site Hamiltonians

Hdec =
N
∑

i=1

Hi, (3.44)

each involving all the interaction terms of the one particular primary spin

Hi = −Jdecσi(µj + µk + µl). (3.45)

Substituting Eqs. (3.44) and (3.45) into a statistical definition of the partition function

(1.2) allows us to partially factorize the partition function of the spin-1/2 Ising model on

the decorated hexagonal lattice and write it in the form

Zdec =
∑

{µj}

N
∏

i=1

∑

σi=±1

exp[βJdecσi(µj + µk + µl)]. (3.46)
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Above, the former summation runs over all available spin configurations on the secondary

sites, the product is over all primary sites and the latter summation is carried out over

the spin states of the one particular primary spin of the decorated hexagonal lattice.

The structure of the partition function (3.46) immediately justifies an application of the

familiar star-triangle mapping transformation

∑

σi=±1

exp[βJdecσi(µj + µk + µl)] = 2 cosh[βJdec(µj + µk + µl)]

= C exp[βJkag(µjµk + µkµl + µlµj)], (3.47)

which satisfies the self-consistency condition provided that

C = 2[cosh(3βJdec)]
1

4 [cosh(βJdec)]
3

4 , (3.48)

βJkag =
1

4
ln

[

cosh(3βJdec)

cosh(βJdec)

]

=
1

4
ln [2 cosh(2βJdec) − 1] . (3.49)

The star-triangle transformation maps the spin-1/2 Ising model on the decorated hexago-

nal lattice into the spin-1/2 Ising model on the Kagomé lattice once it is performed at all

primary sites. As a matter of fact, it is easy to derive the following exact mapping corre-

spondence between the partition functions of both these models by a direct substitution

of the star-triangle mapping (3.47) into the relation (3.46)

Zdec(5N/2, βJdec) = CNZkag(3N/2, βJkag). (3.50)

At this stage, it is possible to combine the decoration-iteration mapping with the star-

triangle transformation in order to express the partition function of the spin-1/2 Ising

model on the Kagomé lattice in terms of the corresponding partition function of the spin-

1/2 Ising model on the hexagonal lattice. The mapping relations (3.42) and (3.50) provide

this useful connection between the partition functions of the spin-1/2 Ising model on the

hexagonal and Kagomé lattices

Zkag(3N/2, βJkag) =





B
3

2

C





N

Zhex(N, βJh)

= 2N

{

exp(6βJh)[exp(2βJh) + 1]

[2 exp(4βJh) + exp(2βJh) − 1]3

}
1

4

Zhex(N, βJh), (3.51)

whereas Eqs. (3.41) and (3.49) relate the effective temperatures of the hexagonal and

Kagomé lattices with the equal partition function

βJkag =
1

4
ln [2 exp(2βJh) − 1] . (3.52)
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Substituting the exact critical temperature of the spin-1/2 Ising model on the hexagonal

lattice (3.31) to the mapping relation (3.52) yields the exact critical temperature of the

spin-1/2 Ising model on the Kagomé lattice

kBTc

Jkag

=
4

ln(3 + 2
√

3)
. (3.53)

Before concluding, let us compare the obtained critical temperatures corresponding

to the order-disorder phase transition of the spin-1/2 Ising model on several lattices.

For this purpose, the Table 2 enumerates the critical temperatures of the spin-1/2 Ising

model on all three regular planar lattices – hexagonal, square and triangular, which can

be regarded as the only possible particular tilings that entirely cover the plane with the

same regular polygon (hexagon, square and triangle, respectively). The critical point

of the semi-regular Kagomé lattice, which consists of two kinds of regularly alternating

polygons (hexagons and triangles) is especially interesting from the academic point of

view, since this lattice represents the only semi-regular tiling, which has all sites as well

as all bonds equivalent quite similarly as a triad of the aforementioned regular lattices. It

can be easily understood from the Table 2 that the greater the coordination number (the

number of nearest neighbours) of the planar lattice, the higher the critical temperature

of its order-disorder transition. Accordingly, the cooperativity of spontaneous ordering

seems to be very closely connected with such a topological feature as being the lattice’s

coordination number. On the other hand, the coordination number by itself does not

entirely determine the critical temperature as it can be clearly seen from a comparison of

the critical temperatures of the square and Kagomé lattices having the same coordination

number. It turns out that the irregular lattices composed of more regular polygons always

have lower critical temperature than their regular counterparts with the same averaged

coordination number. Thus, it might be concluded that the cooperativity is strongly

related also to other topological features of planar lattices. Note that such an information

cannot be elucidated from the approximative methods that usually predict the same

Table 2: Critical temperatures of the spin-1/2 Ising model on several planar lattices.

hexagonal kagomé square triangular

kBTc/J 1.51865 2.14332 2.26919 3.64096
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critical temperature for all lattices with the same coordination numbers.

3.4 Transfer-Matrix Approach

Even although the dual, star-triangle and decoration-iteration transformations provide

several rigorous results for the spin-1/2 Ising model on the planar lattices, they do not

solve this problem completely as they afford exact results precisely at a critical point

alone. In this regard, sophisticated mathematical methods are needed in order to obtain

a complete closed-form exact solution of 2D Ising model in a whole temperature range.

Here, we shall show some crucial points of the transfer-matrix approach when applying it

to the spin-1/2 Ising model on the simple square lattice. It is noteworthy, however, that

the procedure to be explained in what follows can be used to obtain the exact solution of

the spin-1/2 Ising model on an arbitrary planar lattice in the qualitatively same manner

as explained below for the case of square lattice.

Let us consider the spin-1/2 Ising model on the square lattice, which consists of r rows

and c columns and is defined through the Hamiltonian

H = −J





r
∑

i=1

c
∑

j=1

σi,jσi+1,j +
r
∑

i=1

c
∑

j=1

σi,jσi,j+1



 . (3.54)

Apparently, the total Hamiltonian (3.54) is constituted by two kinds of summations. The

former summation is carried out over all interactions between the nearest-neighbouring

spins from adjacent rows of the square lattice, while the latter one takes into account

all interactions between the nearest-neighbouring spins from adjacent columns. As usual,

the periodic boundary conditions simplifying further treatment are imposed by

σr+1,j = σ1,j, where j = 1, 2, . . . , c; (3.55)

σi,c+1 = σi,1, where i = 1, 2, . . . , r. (3.56)

It is noteworthy that the periodicity of the square lattice, which is ensured by the con-

ditions (3.55) and (3.56), is equivalent to wrapping the square lattice on a torus in such

a way that the cth column is coupled to the first column and the rth row is coupled to

the first row (Fig. 7). This is the statistical-mechanical definition of the spin-1/2 Ising

model on the square lattice with periodic boundary conditions in both horizontal and
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Figure 7: The square lattice wrapped on a torus ensures periodic (cyclic) boundary conditions

in both horizontal as well as vertical directions.

vertical directions, which is in principle sufficient for evaluating its partition function. It

should be noted, however, that the accurate evaluation of the partition function of any

2D Ising model is an extremely difficult task, since it demands a considerable knowledge

of sophisticated mathematics required for understanding of the exact solution in its full

details.

First, let us denote the overall spin configuration of the jth column of spins by

µj = (σ1,j, σ2,j, . . . , σr,j), (3.57)

which has in total 2r possible spin configurations (the variable µj can be viewed as one

’column’ macrospin with in total 2r possible microstates). The total Hamiltonian (3.54)

can be then written as a sum of two terms, namely, the interaction energy of individual

columns and the interaction energy between adjacent columns. The interaction energy

pertain to the jth column of spins is

H1(µj) = −J
r
∑

i=1

σi,jσi+1,j, (3.58)

while the interaction energy between the jth and (j + 1)st column is given by

H2(µj, µj+1) = −J
r
∑

i=1

σi,jσi,j+1. (3.59)

With all this in mind, the total Hamiltonian (3.54) can be rewritten as a sum of both

these contributions

H(µ) =
c
∑

j=1

[H1(µj) + H2(µj, µj+1)] (3.60)
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and it can be further symmetrized upon

H(µ) =
c
∑

j=1

{

1

2
[H1(µj) + H1(µj+1)] + H2(µj, µj+1)

}

. (3.61)

Furthermore, it is very appropriate to substitute Eq. (3.61) to a statistical definition of

the partition function (1.2) in order to gain the relation

Z =
∑

µ1

∑

µ2

. . .
∑

µc

exp





c
∑

j=1

{

−β

2
[H1(µj) + H1(µj+1)] − βH2(µj, µj+1)

}





=
∑

µ1

∑

µ2

. . .
∑

µc

c
∏

j=1

exp

{

−β

2
[H1(µj) + H1(µj+1)] − βH2(µj, µj+1)

}

. (3.62)

The structure of the relation (3.62) implies that the partition function of the spin-1/2 Ising

model on the square lattice can be formally calculated following the standard procedure

based on the transfer-matrix method

Z =
∑

µ1

∑

µ2

. . .
∑

µc

T (µ1, µ2)T (µ2, µ3) . . . T (µc, µ1) =
∑

µ1

T c(µ1, µ1) = Tr(T c), (3.63)

with the relevant transfer matrix T (µj, µj+1) depending on the two nearest-neighbouring

’column’ macrospins µj and µj+1

T (µj, µj+1) = exp

{

−β

2
[H1(µj) + H1(µj+1)] − βH2(µj, µj+1)

}

= exp

[

βJ

2

(

r
∑

i=1

σi,jσi+1,j +
r
∑

i=1

σi,j+1σi+1,j+1

)

+ βJ
r
∑

i=1

σi,jσi,j+1

]

. (3.64)

As a matter of fact, the final result to be presented in Eq. (3.63) indicates that the

partition function of the spin-1/2 Ising model on the square lattice can be calculated as

a trace of the matrix T c, which is eventually equal to a sum over all eigenvalues of the

2r × 2r transfer matrix T (µj, µj+1) raised to the cth power

Z = Tr(T c) =
2r
∑

j=1

λc
j. (3.65)

In the thermodynamic limit, the Helmholtz free energy normalized per one site can be

largely simplified by sorting the eigenvalues of the transfer matrix T (µj, µj+1) in descend-

ing order λ1 > λ2 ≥ . . . ≥ λ2r , actually,

F = −kBT lim
r→∞ lim

c→∞
1

rc
lnZ = −kBT lim

r→∞ lim
c→∞

1

rc
ln (λc

1 + λc
2 + . . . + λc

2r)

= −kBT lim
r→∞

1

r
ln λ1 − kBT lim

r→∞
lim
c→∞

1

rc
ln

[

1 +
2r
∑

k=1

(

λk

λ1

)c]

= −kBT lim
r→∞

1

r
ln λ1. (3.66)
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In this way, the finding of the exact solution for the spin-1/2 Ising model on the square

lattice essentially reduces to finding of the largest eigenvalue of the transfer matrix

T (µj, µj+1). It should be stressed, nevertheless, that the exact solution of the spin-1/2

Ising model on the square lattice requires the finding of the largest eigenvalue of the 2r×2r

transfer matrix T (µj, µj+1) by letting r tend to infinity unlike the finding of the largest

eigenvalue of the simple 2 × 2 transfer matrix corresponding to the spin-1/2 Ising chain.

This is an origin of major difficulties to be present by solving any planar Ising model.

The largest eigenvalue of the transfer matrix, which corresponds to the spin-1/2 Ising

model on the square lattice, was firstly derived in the highly celebrated Onsager’s paper [1]

by the use of Lie algebra and group representation. It is worthy to note that the original

Onsager’s work as well as many of its subsequent simplifications offered by the Pfaffian

method or other combinatorial approaches are mathematically too intricate to follow them

within this elementary course. Therefore, we shall henceforth restrict ourselves merely to

stating the final result of this rather cumbersome derivation. The largest eigenvalue of

the transfer matrix (3.64) is

λ1 = [2 sinh(2βJ)]
r
2 exp

[

1

2
(α1 + α3 + . . . + α2r−1)

]

, (3.67)

where αk is defined by

cosh(αk) = coth(2βJ) cosh(2βJ) − cos

(

πk

r

)

. (3.68)

By adopting Eq. (3.67), the Helmholtz free energy (3.66) per one site can be modified to

F = −kBT lim
r→∞

1

r
ln λ1 = −kBT

2
ln [2 sinh(2βJ)] − kBT lim

r→∞
1

2r

r
∑

k=1

α2k−1. (3.69)

In the thermodynamic limit (r → ∞), the sum appearing in Eq. (3.69) can be substituted

by the integral so that

F = −kBT

2
ln [2 sinh(2βJ)] − kBT

2π

π
∫

0

arccosh [coth(2βJ) cosh(2βJ) − cos θ] dθ. (3.70)

The expression (3.70) can be further simplified by the use of identity

arccosh|x| =
1

π

π
∫

0

ln[2(x − cos φ)]dφ, (3.71)
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which consecutively yields from Eq. (3.70) the formula

F = − kBT

2
ln [2 sinh(2βJ)] − kBT

2
ln 2

− kBT

2π2

π
∫

0

π
∫

0

ln [coth(2βJ) cosh(2βJ) − cos θ − cos φ] dθdφ. (3.72)

The formula (3.72) can finally be symmetrized to

F = − kBT ln 2

− kBT

2π2

π
∫

0

π
∫

0

ln
{

[cosh(2βJ)]2 − sinh(2βJ)[cos θ + cos φ]
}

dθdφ. (3.73)

The above equation represents the famous Onsager’s result determining the Helmholtz

free energy of the spin-1/2 Ising model on the square lattice. It should be remarked that

the exact results for other thermodynamic quantities can be obtained from Eq. (3.73) after

straightforward but usually lengthly calculation by the use of standard thermodynamical-

statistical relations. For simplicity, we shall merely list the exact expression for the spon-

taneous magnetization, which represents the order parameter for ferromagnetic materials.

Even though the final expression for the spontaneous magnetization of the spin-1/2 Ising

model on the square lattice is surprisingly simple

m =

{

[

1 − 1

(sinh 2βJ)4

]
1

8

if T < Tc,

0 if T ≥ Tc,

(3.74)

its derivation is regrettably complex11. It can be easily understood from Eq. (3.74) that

the spontaneous magnetization is zero at and above the critical temperature, while it

monotonically increases by decreasing the temperature until its saturation value is reached

at the absolute zero temperature (see Fig. 8a). The non-zero spontaneous magnetization

means that there is an excess of spins, which are spontaneously pointing in the same

11Note that the exact expression for the spontaneous magnetization cannot be straightforwardly derived

by differentiating the Helmholtz free energy with respect to the external magnetic field (2.28) and con-

secutively taking the limit of vanishing external field, since there is no exact expression for the Helmholtz

free energy in a presence of the external magnetic field. In this regard, some indirect method must be

employed in order to derive the spontaneous magnetization (3.74) in a similar way as firstly done by

C. N. Yang [11] in his pioneering work published in 1952.
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Figure 8: a) Spontaneous magnetization of the spin-1/2 Ising model on the square lattice as a

function of the dimensionless temperature; b) Temperature dependence of the specific heat in

an absence of the external magnetic field. The logarithmic divergence in the specific heat can

be observed at critical temperature.

spatial direction below some (critical) temperature. In other words, the spins have a

tendency to align themselves in the same spatial direction and if we randomly choose

one spin from the lattice, then, it is more likely that the spin is pointing in the direction

of the spontaneous magnetization than in the opposite direction. It is noteworthy that

this rather peculiar long-range correlation occurs spontaneously without being enforced

by some external field of force such as the external magnetic field.

We shall end up the present section with several concluding remarks. First, it is

worthwhile to remark that changing the dimensionality of a magnetic lattice (from 1D to

2D) has such a dramatic effect upon the phase transitions and critical phenomena. Even

although 2D Ising model seems to be extraordinary simple model, it should be emphasized

that the exact solution of 2D Ising model in a presence of the external magnetic field is

still unresolved problem, yet. Note furthermore that this exact solution would be of

fundamental importance as it would clarify the dependence of the magnetization on the

magnetic field or it would permit the derivation of the exact closed-form expression for

the zero-field susceptibility as a function of the temperature. What is even much worse,

we even do not know whether such a calculation can be in principle performed.
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3.5 Ising Model and Insulating Magnetic Materials

Even although the Ising model has been originally developed to model essential aspects of

magnetic materials, throughout the years it has found manifold applications in seemingly

diverse research areas. Actually, there are several physical motivations why to explore the

Ising model and its manifold variants, which have proved their usefulness in the realm of

statistical physics as suitable models for investigating the order-disorder phenomena in

binary alloys, the lattice gas models capturing liquid–gas transitions, the models clarifying

a phase separation in liquid mixtures, the models explaining an adsorption of gas atoms

on a solid surface, the models elucidating cooperative phenomena in various biological and

chemical systems such as DNA, allosteric enzymes, hemoglobine, myoglobine, etc. Here,

we shall discuss in particular perhaps its most important connection with the insulating

magnetic materials.

For many years was Ising model regarded just as a pure theoretical simplification

without any detailed correspondence to a specific material12. First insulating magnetic

materials, which behave rather similarly to the corresponding Ising model, have indeed

been discovered almost a half century after Wilhelm Lenz suggested to his postgraduate

student Ernst Ising to solve this simple model of magnetism [12]. Apart from this incon-

venience, there are currently two wide families of insulating magnetic materials that are

usually recognized as Ising-like materials generally meeting the microscopic Hamiltonian

based on the Ising model. First class of the Ising-like materials involves several rare-earth

compounds such as dysprosium ethylsulfate nonahydrate Dy(C2H5SO4)3.9H2O, dyspro-

sium aluminum garnet Dy3Al5O12, dysprosium phosphate DyPO4, lithium-holmium flu-

oride LiHoF4, lithium-terbium fluoride LiTbF4 (see [13] and references therein). In this

class of materials, the only carriers of magnetic moment are rare-earth elements (Dy,

Ho, Tb) that interact among themselves almost entirely through dipolar forces and other

non-dipolar interactions are generally weak. Because the dipole-dipole interaction decays

rather rapidly with a distance (as a third power of distance), the interaction between

spatially distant rare-earth ions can frequently be ignored. Therefore, it is often sufficient

12The application of models presuming a fully localized magnetic moments to conducting metals such

as iron or nickel is unjustifiable for fundamental reasons.

58



3.5 Ising Model and Insulating Magnetic Materials 3 2D ISING MODEL

to consider merely the interaction between nearest-neighbour rare-earth ions and to ne-

glect all other interactions with more distant neighbours (Ising-like criterion). However,

it should be nevertheless pointed out that the magnetic dipole-dipole interaction is in fact

a long-range interaction and hence, the interactions with distant neighbours can occa-

sionally be at an origin of more complex behaviour. Thus, the most suitable rare-earth

compounds for representing Ising-like materials are those, where interactions with more

distant neighbours almost completely cancel out and the nearest-neighbour interaction

makes the most significant contribution to the overall magnetic behaviour. Even if there

could exist clear differences between the ideal Ising model and the real magnetic sub-

stances, the agreement between theoretical predictions and relevant experimental data is

then found to be very satisfactory [13, 14].

More sophisticated representatives of the Ising-like materials represent insulating mag-

netic materials from the family of polymeric coordination compounds. Partly by accident,

but in most cases by a careful choice of magnetic substances from an immense reservoir of

polymeric coordination compounds, it is often possible to find magnetic materials whose

magnetic properties resemble quite closely those predicted by the Ising model and its vari-

ous variants [14]. In this wide class of compounds, the most important interaction between

magnetic centers (usually transition-metal elements) represents a superexchange interac-

tion mediated via intervening non-magnetic atom(s). Unfortunately, there is no general

theory, which would admit a straightforward calculation of the parameter J related to the

pairwise exchange interaction between metal centers and hence, the coupling constant J

must be determined just as a self-adjustable parameter from a comparison with relevant

experimental data of a specific material. It is noteworthy, however, that the strength of

exchange interaction depends very sensitively on a distance (it decays like r−10 or even

more rapidly [15]) as it bears a direct relationship with an effective overlap between the

wave functions of magnetic metal centers and the ones of non-magnetic atoms mediating

the superexchange interaction between them13. In this respect, the polymeric coordina-

tion compounds satisfy even much better the necessary (but not sufficient) criterion of

13There is a rule that each additional intervening atom reduces the strength of exchange interaction

hundred times.
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the Ising-like material, which demands a predominant nearest-neighbour interaction and

weak further-neighbour interactions.

The most crucial limitation for obtaining Ising-like material from the class of polymeric

coordination compounds thus lies in the fact that the exchange interaction is extremely

anisotropic within the Ising model description (this model contains just one spatial com-

ponent of spin operators), while the superexchange mechanism gives rise to a wholly

isotropic exchange interaction. According to this, the Heisenberg model (containing all

three spatial components of spin operators) is in general much more appropriate for de-

scribing the real magnetic materials from this wide family of compounds. However, the

effective anisotropic exchange interaction need not arise from the interaction mechanism,

but it may have a close connection to different sources of magnetic anisotropy such as

spin-orbit interaction, crystal-field effect, dipolar interaction and so on. In such a case, the

application of Ising model is justified even if it still represents a certain oversimplification

of the real system (there does not exist infinite magnetic anisotropy in nature). Notwith-

standing of this objection, the overall agreement between theoretical predictions derived

from Ising model and experimental measurements performed on several cobalt-based co-

ordination compounds, as for instance Co(pyridine)2Cl2, K2CoF4, Rb2CoF4, Cs3CoX5 (X

= F, Cl, Br), is generally found very satisfactory [14].

It should be also remarked that all magnetic compounds from both the families of

Ising-like materials are in reality three-dimensional crystals, however, some of them can

effectively possess the low-dimensional magnetic structure on behalf of the lack of an ap-

preciable magnetic interaction in one or more spatial directions. As a matter of fact, the

magnetic and crystallographic lattice can significantly differ especially when the carriers

of magnetic moment are largely separated along some spatial direction(s). In the conse-

quence of that, the magnetic lattice then becomes low-dimensional due to the short-range

character of magnetic interactions. The reliability of exactly solved low-dimensional Ising

models in representing real-world insulating magnetic materials has been checked with

appreciable success even if some healthy skepticism is always appropriate if one is seeking

true understanding of real materials [13].

Finally, let us briefly comment on a connection between the effective spin Hamiltonian
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of the usual spin-1/2 Ising model defined with the help of Ising spin variables σi = ±1

H = −
∑

(i,j)

Jijσiσj −
∑

i

Hσi (3.75)

and the effective spin Hamiltonian describing the real insulating magnetic materials. It

should be stressed, nevertheless, that the spin-1/2 particles have quantized intrinsic an-

gular momentum with the eigenvalues S = ±h̄/2 in opposite to the simple Ising spin

variables σi = ±1 (it is tacitly presumed that the Planck’s constant h̄ is set to unity

and the eigenvalues ±1/2 are rescaled to ±1). In addition, each magnetic moment mi

(rather than spin Si) possesses some magnetostatic Zeeman’s energy if a spin-1/2 par-

ticle is placed in an external magnetic field B. According to the magneto-mechanical

parallelism, there is a simple correspondence between a spin angular momentum and its

corresponding magnetic moment and this correspondence can be expressed through the

relation mi = gµBSi (g is Landé g-factor and µB is Bohr magneton). With all this in

mind, is is much more precise to define the spin-1/2 Ising model through the Hamiltonian

H = −
∑

(i,j)

RijSiSj −
∑

i

gµBBSi. (3.76)

It should be pointed out, however, that both Hamiltonians (3.75) and (3.76) are essentially

equivalent on assumption that

Jij = Rijh̄
2/4 and H = gµBBh̄/2, (3.77)

whereas it is much more appropriate to work with some scaled dimensionless variables

rather than with the real physical quantities multiplied by several constant factors.
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4 Exactly Soluble Heisenberg Models

The Heisenberg model [16] is being another valuable microscopic model, which is worth-

while to study partly on account of an interesting quantum behaviour it displays and

partly due to the fact that it represents more realistic model of insulating magnetic mate-

rials than the Ising model. The Heisenberg model can be defined through the Hamiltonian

Ĥ = −J
∑

(i,j)

Ŝi · Ŝj = −J
∑

(i,j)

(

Ŝx
i Ŝx

j + Ŝy
i Ŝy

j + Ŝz
i Ŝ

z
j

)

, (4.1)

where the summation is usually restricted to nearest-neighbour spin pairs only, the pa-

rameter J then labels the exchange interaction between the nearest-neighbouring spins

and Ŝα
i (α = x, y, z) denotes spatial components of a spin operator at ith lattice point.

It is quite obvious from the definition (4.1) that the Heisenberg model contains all three

spatial components of a spin operator in contrast to the Ising model, which contains just

one spatial component of each spin operator involved in its Hamiltonian. It should be

remarked that this is an origin of insurmountable mathematical complexities to emerge

by rigorous solving of the Heisenberg model, since different spatial components of the

same spin operator do not commute with each other. Owing to this fact, it is much more

difficult to attain the exact solution of 1D Heisenberg model in comparison with that

one of its corresponding Ising model. The non-commutability between the relevant spin

operators vanishes in the limit of infinite spin and this special limiting case is therefore

called as the classical Heisenberg model.

4.1 Classical Heisenberg Chain

In this part, let us explicitly evaluate the partition function and other important quantities

of 1D classical Heisenberg model. It is worthy to mention that the approach developed

hereafter closely follows the original exact treatment invented by M. E. Fisher (1964) [17].

First, let us write the Hamiltonian of 1D classical Heisenberg model on the open chain

consisting of (N + 1) spins S of infinite magnitude (S → ∞)

Ĥ = −JS

N
∑

i=1

Ŝi−1 · Ŝi. (4.2)
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Next, it is advisable to introduce the unit vector operator ŝi = Ŝi/S with the following

commutation rules between its spatial components

[ŝx
i , ŝ

y
i ] = iŝz

i /S, [ŝy
i , ŝ

z
i ] = iŝx

i /S and [ŝz
i , ŝ

x
i ] = iŝy

i /S. (4.3)

In the limit S → ∞, the different spatial components of the unit vector operators commute

and thus, the Hamiltonian (4.2) can be rewritten to the classical form

Ĥ = −J
N
∑

i=1

ŝi−1 · ŝi (4.4)

by a mere rescaling of the nearest-neighbour exchange coupling J = JSS2. The partition

function of this classical 1D spin system can be consequently written as

Z =
∫ dΩ0

4π

∫ dΩ1

4π
. . .
∫ dΩN

4π
exp

(

βJ
N
∑

i=1

ŝi−1 · ŝi

)

, (4.5)

where dΩi is the element of solid angle for the unit vector si. The integrals appearing in

the above expression can easily be separated by introducing the spherical coordinates θi

and φi for each unit vector si in a such way that they are referred to the previous unit

vector si−1 as a zenith axis

Z =
∫ dΩ0

4π

N
∏

i=1

∫ dΩi

4π
exp (βJ ŝi−1 · ŝi) =

N
∏

i=1

2π
∫

0

π
∫

0

exp (βJ cos θi) sin θidθidφi. (4.6)

If the integration over the azimuthal angle φi is followed by the integration over the zenith

angle θi, the partition function (4.6) of 1D classical Heisenberg chain simplifies to

Z =

(

sinh βJ

βJ

)N

. (4.7)

It can be easily understood that the above expression is invariant under the transformation

J → −J , what means that the classical Heisenberg model has the same partition function

regardless of whether ferromagnetic or antiferromagnetic interaction is assumed. In the

thermodynamic limit (N → ∞), the reduced Helmholtz free energy becomes

F = −kBT lim
N→∞

1

N
lnZ = kBT ln (βJ) − kBT ln (sinh βJ) , (4.8)

while the internal energy per one spin reduces to

U = − lim
N→∞

1

N

∂ lnZ
∂β

= kBT − J coth βJ. (4.9)
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Finally, let us derive analytical expression for the entropy

S = −∂F
∂T

= kB

[

1 + ln

(

sinh βJ

βJ

)

− βJ coth βJ

]

(4.10)

and specific heat

C =
∂U
∂T

= kB



1 −
(

βJ

sinh βJ

)2


 . (4.11)

It can be readily checked from Eqs. (4.10) and (4.11) that the entropy diverges S → −∞
and the specific heat tends to constant value C → kB by approaching the absolute zero

temperature T → 0 K and these claims are in obvious contradiction with both Nernst’s

as well as Planck’s formulations of the third law of thermodynamics. However, it should

be mentioned that both these unrealistic features are typical for any classical spin model.

4.2 Majumdar-Ghosh Model

The crucial step, which enables to obtain the exact solution for the classical Heisenberg

chain in a relatively straightforward manner, represents a validity of the commutation rules

(4.3) that permits a simple factorization of the interaction terms in the relevant expression

of the partition function (4.6). On the other hand, it is worthwhile to remark that the

commutability between different spatial components of the spin operator (to emerge just

in the limit S → ∞) disables an onset of quantum fluctuations, which basically change

magnetic as well as thermodynamic properties of the Heisenberg chain with a finite spin.

Generally, the lower the spin value, the stronger the influence of quantum fluctuations on

basic characteristics of the quantum Heisenberg model should be expected.

In this part, we shall focus in particular on the ground-state behaviour of the spin-1/2

Heisenberg chain with both nearest-neighbour as well as next-nearest-neighbour interac-

tions (see Fig. 9) [18]. Interestingly, the addition of a special next-nearest-neighbour inter-

action facilitates obtaining the exact solution compared to the simple spin-1/2 Heisenberg

chain with the nearest-neighbour interaction only, which can be exactly treated merely

by a rather cumbersome Bethe ansatz method [19]. Let us begin by introducing the

general Hamiltonian for the spin-1/2 Heisenberg chain with the nearest-neighbour and
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J

aJS1

J

aJ

S3 S2 -1j
S2 +1j SN-1

S2 S4 S2j
S2 +2j SN

Figure 9: The ’railroad-trestle’ geometry of the spin-1/2 Heisenberg chain with the nearest-

neighbour interaction J and the next-nearest-neighbour interaction αJ . The ’zig-zag’ bonds

(solid lines) are referred to nearest-neighbour interactions and horizontal bonds (broken lines) to

the next-nearest-neighbour ones. The periodic boundary conditions are assumed for simplicity.

next-nearest-neighbour interactions

Ĥ = J
N
∑

j=1

(

Ŝj · Ŝj+1 + αŜj · Ŝj+2

)

, (4.12)

whereas the cyclic boundary conditions SN+1 ≡ S1 and SN+2 ≡ S2 are imposed for

simplicity (these are equivalent to joining both chain ends). Notice that the general

Hamiltonian (4.12) reduces to the Majumdar-Ghosh model by restricting the next-nearest-

neighbour interaction precisely to a half of the nearest-neighbour interaction (α = 1/2)

ĤMG = J
N
∑

j=1

Ŝj · Ŝj+1 +
J

2

N
∑

j=1

Ŝj · Ŝj+2. (4.13)

Under this circumstance, it is very convenient to relate the Hamiltonian of the Majumdar-

Ghosh model (4.13) with the trial Hamiltonian

Ĥt =
J

4

N
∑

j=1

(

Ŝj + Ŝj+1 + Ŝj+2

)2
= J

N
∑

j=1

Ŝj · Ŝj+1 +
J

2

N
∑

j=1

Ŝj · Ŝj+2 +
3

4
J

N
∑

j=1

Ŝ2
j . (4.14)

According to quantum mechanics, the square of spin angular momentum is an integral

of motion (i.e. it commutes with the Hamiltonian) and thus, it is possible to write the

following relation Ŝ2
j = S(S + 1) = 3/4 for the particular spin case S = 1/2. With regard

to this, the third sum in the Hamiltonian (4.14) represents merely a constant factor

Ĥt = J
N
∑

j=1

Ŝj · Ŝj+1 +
J

2

N
∑

j=1

Ŝj · Ŝj+2 +
9

16
JN. (4.15)

The comparison between Eqs. (4.13) and (4.15) relates the Hamiltonian of Majumdar-

Ghosh model to the trial Hamiltonian through the simple relationship

ĤMG = Ĥt −
9

16
NJ. (4.16)
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It is quite obvious from Eq. (4.16) that eigenvalues of the Majumdar-Ghosh model (4.13)

can be obtained from eigenvalues of the trial Hamiltonian (4.15) by a mere shift of these

energy levels by the constant −9NJ/16. Of course, the ground state of the Majumdar-

Ghosh model is unambiguously given just by the lowest-energy eigenvalue and hence, it

is of particular interest to search for the lowest-lying eigenvalue of the trial Hamiltonian

(4.15). Because of the validity of inequality

(

Ŝj + Ŝj+1 + Ŝj+2

)2 ≥ [S(S + 1)]S= 1

2

=
3

4
(4.17)

the eigenvalues of the trial Hamiltonian (4.15) must obey the condition

Et ≥
3

16
NJ. (4.18)

By combining the inequality (4.18) with the relation (4.16), all eigenvalues of the Majumdar-

Ghosh model have to obey the condition

EMG ≥ EGS ≡ −3

8
NJ. (4.19)

It is quite apparent from the above relation that the lowest-energy (ground-state) eigen-

value of the Majumdar-Ghosh model must have the energy EGS = −3NJ/8.

To gain a deeper insight into the ground-state spin arrangement, let us firstly focus on

the possible eigenstates of the simple spin-1/2 Heisenberg dimer model defined through

the Hamiltonian

Ĥd = JŜ1 · Ŝ2. (4.20)

By remembering that the spatial components of both spin operators Ŝj ≡ (Ŝx
j , Ŝy

j , Ŝz
j )

(j = 1, 2) are given within the usual representation by standard Pauli matrices

Ŝx
j =

1

2







0 1

1 0







j

, Ŝy
j =

1

2







0 −i

i 0







j

, Ŝx
j =

1

2







1 0

0 −1







j

, (4.21)

the Hamiltonian (4.20) of the spin-1/2 Heisenberg dimer model can be transcribed to the

following matrix representation

〈γ|Ĥd|α〉 =





















〈↑↑|Ĥd|↑↑〉 〈↑↓|Ĥd|↑↑〉 〈↓↑|Ĥd|↑↑〉 〈↓↓|Ĥd|↑↑〉
〈↑↑|Ĥd|↑↓〉 〈↑↓|Ĥd|↑↓〉 〈↓↑|Ĥd|↑↓〉 〈↓↓|Ĥd|↑↓〉
〈↑↑|Ĥd|↓↑〉 〈↑↓|Ĥd|↓↑〉 〈↓↑|Ĥd|↓↑〉 〈↓↓|Ĥd|↓↑〉
〈↑↑|Ĥd|↓↓〉 〈↑↓|Ĥd|↓↓〉 〈↓↑|Ĥd|↓↓〉 〈↓↓|Ĥd|↓↓〉




















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=





















J/4 0 0 0

0 −J/4 J/2 0

0 J/2 −J/4 0

0 0 0 J/4





















(4.22)

with the four orthogonal spin states used as basis states

|↑↑〉 =







1

0







1







1

0







2

, |↑↓〉 =







1

0







1







0

1







2

,

|↓↑〉 =







0

1







1







1

0







2

, |↓↓〉 =







0

1







1







0

1







2

. (4.23)

The straightforward diagonalization of the Hamiltonian (4.22) yields a complete spectrum

of eigenvalues and subsequently, the standard procedure can be utilized for attaining its

corresponding eigenfunctions, as well. In this way, one easily finds the complete set of

eigenvalues and eigenfunctions

E0 = −3

4
J, |Ψ0〉 =

1√
2

(|↑↓〉 − |↓↑〉) (4.24)

E1 =
1

4
J, |Ψ1〉 = |↑↑〉 (4.25)

E2 =
1

4
J, |Ψ2〉 =

1√
2

(|↑↓〉 + |↓↑〉) (4.26)

E3 =
1

4
J, |Ψ3〉 = |↓↓〉. (4.27)

The nature of overall spectrum of eigenenergies is quite surprising, since it consists of

one non-degenerate energy level (singlet), which is separated from a three-fold degenerate

energy level (triplet) by the so-called singlet–triplet energy gap ∆Es−t = J . Note that the

singlet–triplet structure of eigenenergies is in obvious contrast with simple intuitive expec-

tations that would rather predict two different kinds of two-fold degenerate eigenstates;

two ferromagnetic ones with the energy J/4 and respectively, two antiferromagnetic ones

with the energy -J/4. Both the ferromagnetic states |↑↑〉 and |↓↓〉 are eigenstates of the

Heisenberg model and they actually have the energy J/4. Contrary to this, none of two

antiferromagnetic eigenstates (4.24) and (4.26) (if one spin is pointing ’up’, then the other

one is necessarily pointing ’down’) do not possess the classically predicted energy -J/4
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and what is even more surprising, they do not even have the same energy. The only plau-

sible explanation for the energy difference between both antiferromagnetic eigenstates lies

evidently in an influence of quantum fluctuations, which lift the degeneracy of antiferro-

magnetic eigenstates owing to the fact that the simple antiferromagnetic states |↑↓〉 and

|↓↑〉 are not eigenstates of the Heisenberg model. Bearing this in mind, one may conclude

that it is much more intriguing to investigate antiferromagnetic rather than ferromagnetic

Heisenberg models, because the latter ones usually exhibit semi-classical spin order not

affected by quantum effects.

Under the assumption of antiferromagnetic interaction J > 0, the lowest energy level

of the spin-1/2 Heisenberg dimer model with two spins 1 and 2 is fully characterized by the

antisymmetric singlet-dimer eigenfunction for which we shall introduce the abbreviated

notation

|Ψ0〉 =
1√
2

(|↑↓〉 − |↓↑〉) = [1, 2]. (4.28)

Now, let us try to construct the lowest-energy eigenfunction of the Majumdar-Ghosh

model by a mere considering of the singlet-dimer eigenfunctions (4.28). The Heisen-

berg chain with the nearest-neighbour and next-nearest-neighbour interactions can be

completely covered with the singlet-dimer states in two different ways, which are dia-

grammatically shown in Fig. 10 and mathematically can be expressed as

|I〉 = [1, 2][3, 4] . . . [2j − 1, 2j] . . . =
N/2
∏

j=1

[2j − 1, 2j], (4.29)

and respectively

|II〉 = [2, 3][4, 5] . . . [2j, 2j + 1] . . . =
N/2
∏

j=1

[2j, 2j + 1]. (4.30)

Our next aim is to investigate whether |I〉 and |II〉 are actually eigenfunctions of the

Majumdar-Ghosh model and if yes, whether they determine the lowest-energy eigenstate

(ground state). For simplicity, we shall merely prove that |I〉 is indeed the lowest-energy

eigenstate with the ground-state energy EGS = −3NJ/8 (the proof for |II〉 is essentially

the same). First, let us examine an impact of spin operators Ŝ2j−1 · Ŝ2j, Ŝ2j · Ŝ2j+1,

Ŝ2j−1 · Ŝ2j+1 and Ŝ2j · Ŝ2j+2 on the singlet-dimer states [2j − 1, 2j] creating |I〉. After
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S1 S3 S2 -1j
S2 +1j SN-1

S2 S4 S2j
S2 +2j SN

S1 S3 S2 -1j
S2 +1j SN-1

S2 S4 S2j
S2 +2j SN

| >I

| >II

Figure 10: Two possible eigenstates of the Majumdar-Ghosh model, which can be constructed

just from the singlet-dimer states.

straightforward but a little bit lengthly calculation

Ŝ2j−1 · Ŝ2j[2j − 1, 2j] = −3

4
[2j − 1, 2j], (4.31)

Ŝ2j · Ŝ2j+1[2j − 1, 2j][2j + 1, 2j + 2] =
1

8

(

2|↑↑↓↓〉 + 2|↓↓↑↑〉

−|↑↓↑↓〉 − |↑↓↓↑〉 − |↓↑↑↓〉 − |↓↑↓↑〉
)

2j−1,2j,2j+1,2j+2
, (4.32)

Ŝ2j−1 · Ŝ2j+1[2j − 1, 2j][2j + 1, 2j + 2] = −1

8

(

2|↑↑↓↓〉 + 2|↓↓↑↑〉

−|↑↓↑↓〉 − |↑↓↓↑〉 − |↓↑↑↓〉 − |↓↑↓↑〉
)

2j−1,2j,2j+1,2j+2
, (4.33)

Ŝ2j · Ŝ2j+2[2j − 1, 2j][2j + 1, 2j + 2] = −1

8

(

2|↑↑↓↓〉 + 2|↓↓↑↑〉

−|↑↓↑↓〉 − |↑↓↓↑〉 − |↓↑↑↓〉 − |↓↑↓↑〉
)

2j−1,2j,2j+1,2j+2
, (4.34)

one indeed finds that |I〉 is one of the eigenfunctions of the Hamiltonian (4.13) and more-

over, its corresponding eigenenergy is equal to the lowest possible (ground-state) energy

EI = 〈I|ĤMG|I〉 =
1

2
NJ〈I|Ŝ2j−1 · Ŝ2j|I〉 = −3

8
NJ = EGS. (4.35)

Apparently, the dimer product states |I〉 and |II〉 are ground states of the Majumdar-

Ghosh model and in the consequence of that, the spin system is completely disordered as

the correlation function between two different spins (with exception of those which create

singlet dimers) is identically equal to zero even within the ground state

〈Ŝj · Ŝk〉 = 〈I|Ŝj · Ŝk|I〉 = 0. (4.36)

Notwithstanding of this fact the Majumdar-Ghosh model peculiarly exhibits a special

kind of perfect ordering, which is called as a dimer crystal or equivalently as a crystal of
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J

aJS1

J

S3 S2 -1j
S2 +1j SN-1

S2 S4 S2j
S2 +2j SN

Figure 11: The spin-1/2 Heisenberg model on the sawtooth (∆) chain.

singlet dimers. It should be noticed that the dimer crystal can be characterized by the

non-zero dimer–dimer correlation between four spins creating two different singlet dimers.

In our case, the dimer–dimer correlation function is equal to

〈(Ŝ2j−1 · Ŝ2j)(Ŝ2k−1 · Ŝ2k)〉 = 〈I|(Ŝ2j−1 · Ŝ2j)(Ŝ2k−1 · Ŝ2k)|I〉 =
9

16
. (4.37)

Exercises

1. Investigate in particular the temperature dependence of the internal energy, entropy

and specific heat for the classical Heisenberg chain.

2. Calculate a complete spectrum of eigenvalues and eigenfunctions of the spin-1/2 XYZ

Heisenberg dimer model given by the Hamiltonian

ĤXYZ = JXŜx
1 Ŝx

2 + JYŜy
1 Ŝ

y
2 + JZŜ

z
1 Ŝ

z
2 .

How the overall spectrum of eigenenergies changes by introducing a spatial anisotropy

JX = JY 6= JZ or JX 6= JY 6= JZ in the exchange interaction?

3. Prove the validity of relations (4.31)-(4.34).

4. Search for the lowest-energy eigenstate of the spin-1/2 Heisenberg antiferromagnet on

the sawtooth (∆) chain [20] by following the same procedure as used for the Majumdar-

Ghosh model. The investigated model system, which is defined through the Hamiltonian

Ĥ∆ = J
N
∑

j=1

Ŝj · Ŝj+1 + Jα
N/2
∑

j=1

Ŝ2j−1 · Ŝ2j,

is schematically shown in Fig. 11.
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5 Ice-type Models

In this section, we shall consider a certain class of exactly solvable models, which exhibit

perhaps the most interesting phase transitions and critical phenomena among all exactly

solved models. The common feature of all these so-called ice-type models is that they are

based on Pauling’s (1938) [21] and Slater’s (1941) [22] phenomenological description of

cooperative effects closely associated with the hydrogen bonding.

5.1 Six-Vertex Models

5.1.1 Ice Model

Before introducing the ice model, let us firstly make few remarks about the water molecule

(H2O), which represents the constituent particle of the ice. It is well known fact that

each water molecule contains two equivalent O–H covalent bonds, which arise from the

spin pairing of 1s electrons of two hydrogen atoms and two sp3 hybridized electrons of

the oxygen atom, respectively. It should be mentioned that the oxygen has besides two

electrons, which take part by constituting two covalent bonds, another four sp3 hybridized

electrons that reside two so-called lone-pair orbitals. The lobes of lone-pair orbitals are

mirror images with respect to the H–O–H plane with the angle between them about 120◦.

The H–O–H angle between two covalent bonds is 104.5◦ and the length of each of them

is 0.096 nm. Owing to these facts, the geometry of the water molecule can be roughly

regarded as a slightly deformed tetrahedron having the oxygen atom at its center, whereas

two hydrogens and two lone-pair orbitals are situated at its corners (see Fig. 12a). Since

the electronegativity14 of the oxygen is much larger than the electronegativity of the

hydrogen, both spin paired electrons creating O–H covalent bond are shifted closer to the

oxygen atom. Accordingly, there is an excess of a negative charge at the oxygen atom and

its lone-pair orbitals, while there is an excess of a positive charge at both hydrogen atoms.

This charge distribution is responsible for the fact that the water molecule is highly polar,

since the geometry of the water molecule is not linear. In other words, the water molecule

has on behalf of its spatial geometry a rather strong electric dipole moment.

14The electronegativity is a physical quantity, which measures ability of atoms to attract electrons.
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Figure 12: a) The tetrahedron geometry of water molecule; b) The arrow convention specifying

a polarity of the water molecule: arrows always point inwards (outwards) positively (negatively)

charged corners of the water molecule; c)-d) The hydrogen-bonded water molecules, which are

held together by means of one or two hydrogen bonds, respectively.

When two different water molecules come in a sufficiently close contact, it becomes

quite obvious that very specific highly-oriented interactions, which are called as hydrogen

bonds, can lower the overall electrostatic energy of this complex. It is quite apparent

that this occurs just when the hydrogen atoms of one water molecule (i.e. the corners

of tetrahedron with the effective positive charge) are directed towards the lobes of lone-

pair orbitals of the oxygen atom of other water molecule (i.e. the corners of tetrahedron

with the effective negative charge). If the hydrogen bond is being formed, the hydrogen

atom is situated at a link between two oxygen atoms, whereas the oxygen involved in

the covalent bonding is being much closer to the hydrogen atom than the one involved

in the hydrogen bonding. Evidently, any water molecule might in principle form at best

four hydrogen bonds with other water molecules. Ice is a molecular crystal of water

molecules, which condensates predominantly due to the hydrogen bonds formed between

constituent water molecules. It is therefore possible to have the solid hydrogen-bonded

water crystal (ice), where the water molecules are arranged to form 3D network of corner-

sharing tetrahedrons and the centers of these tetrahedrons (i.e. the position of the oxygen

atoms) form 3D diamond-like lattice. 3D diamond-like ice crystal indeed occurs in the

temperature range between -120◦C and -140◦C and is known as ice Ic. It is worthwhile

to remark that the usual ice I, which is stable under the normal conditions (atmospheric

pressure and temperatures slightly below 0◦C), has a wurtzite-like structure that is also

tetrahedrally coordinated. Each water molecule is tetrahedrally bonded to other four

water molecules in both these polymorphs of ice and consequently, there are in total six
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1                     2                     3                     4                    5                     6
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Figure 13: Six possible arrow arrangements satisfying the ice rule.

different orientations available for each molecule of the ice crystal depending on where

the covalent and hydrogen bonds are situated15.

Now, let us construct the possible model of ice. First, it is very convenient to introduce

an arrow convention that specifies the polarity of the water molecule. As we have already

explained in above, the water molecule can be regarded as a slightly deformed tetrahedron

with two kinds of charged corners; the two corners occupied by hydrogen atoms are

positively charged, whereas the other two corners (where the lone-pair orbitals of the

oxygen are directed) are negatively charged. This charge arrangement can be redrawn to

the plane as displayed in Fig. 12b. The simple arrow convention can be introduced through

this rule: let an arrow always point inwards (outwards) a positively (negatively) charged

corner. Apparently, there must be precisely one single arrow on each bond between two

water molecules when the hydrogen bonding takes place in between them (Fig. 12c-d).

The complete hydrogen-bonded network can be thus represented by a graph whose vertices

label the centers of water molecules (i.e. their oxygen atoms) and there is one and just one

arrow on each edge of this graph. Of course, the two arrows must point inwards and the

remaining two outwards from a vertex in agreement with the tetrahedron model of water

molecule with two positively and two negatively charged corners. The Pauling’s claim

[21] ’two arrows pointing inwards and two arrows pointing outwards from a vertex’ is

also known as ice rule, which consequently leads just to six available arrow configurations

with equal energies conveniently set to zero ε1 = . . . = ε6 = 0. The model based on six

available arrow configurations depicted in Fig. 13 is therefore called also as the six-vertex

model. Another basic assumption of the six-vertex model is that the overall energy is

given by a simple sum over all individual vertex energies, what means that the overall

energy is obtained by summing over individual energies of all water molecules.

15There is a large number of polymorphs of ice to be stable at higher pressures, however, each of them

has every water molecule hydrogen-bonded to other four water molecules.
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1                         4                        1 3
3-in,1-out          1-in,3-out               4-in      4-out

Figure 14: The simplest 1D ice model of double hydrogen-bonded water molecules. The vertices

denote positions of oxygen atoms and the arrows specify the hydrogen bonding between the

nearest-neighbouring water molecules. Broken lines demarcate vertices (hydrogen molecules)

with forbidden arrow configuration.

At this stage, we shall define 1D model representing the simplest possible ice model,

which obeys the Pauling’s ice rule ’two in, two out arrows’. The geometry of 1D ice

model of N water molecules is schematically illustrated in Fig. 14. In this figure, each

vertex denotes the oxygen position of one water molecule and the arrows placed on edges

of this graph specify the polarity of water molecules. It is quite obvious from Fig. 14

that the nearest-neighbouring water molecules are bind together through two hydrogen

bonds. Accordingly, the simple observation can be made for each pair of hydrogen-bonded

water molecules: if one water molecule is directed towards the other one by the same

kind of tetrahedron corners (both corners are either positively or negatively charged),

then the other water molecule must be oriented with respect to the former one by the

complementary charged tetrahedron corners to enable the hydrogen bonding between

them. This claim has far-reaching consequences on possible arrow configurations of 1D

ice model. As a matter of fact, once two arrows are pointing likewise on the same side of

a certain vertex, then the Pauling’s ice rule demands all the other vertices with the same

arrow configuration on the same side. As a result, there are just two possible macrostates

that involve first two microstates from Fig. 13: the one with all arrows pointing to the

right and the other one with all arrows pointing to the left (see Fig. 15a-b).

Besides, there also exists the second type of macrostates that are composed solely

of another four microstates having two different arrow orientations on the same side of

each vertex (the last four microstates depicted in Fig. 13). It is quite clear from Figs. 13

and 15c that if one of these microstates is chosen at a certain vertex, then there are

just two different possibilities how to arrange an arrow configuration of each its nearest-
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a)

b)

c)

1           1           1           1 1           1           1 1

2           2           2 2 2           2           2 2

3 6           4           3 4 5           3           6

Figure 15: Several possible macrostates of 1D ice model, which are constructed merely by the

use of allowed arrow configurations shown in Fig. 13.

neighbouring vertex. With regard to this, one can generally set up another 2N macrostates

by employing four microstates of a vertex, which have two different arrows (one in and one

out) on each side. Since the configurational energy is assumed to be the sum of individual

vertex energies and each vertex energy is equal to zero, it follows from (1.3) that the

overall internal energy of each possible macrostate is zero and thus, U = 0. According to

Eq. (1.2), the partition function enumerates the number of microstates accessible to the

macrosystem. It becomes quite apparent from the aforementioned arguments that the

partition function of 1D ice model must be equal to Z = 2 + 2N . Then, the entropy can

be simply obtained by substituting these final results for the partition function and the

internal energy to the relation (1.4). This straightforward procedure yields the entropy

S = kB ln(2 + 2N), which is consistent with the famous Boltzmann’s result

S = kB ln Ω (5.1)

that evaluates the entropy in terms of the number of available microstates Ω corresponding

to the macrostate in the thermal equilibrium. The Helmholtz free energy, internal energy

and entropy reduce in the thermodynamic limit to extraordinary simple expressions

F = −NkBT ln 2, U = 0 and S = NkB ln 2. (5.2)

It is quite evident from Eq. (5.2) that all temperature derivatives of the Helmholtz free

energy are continuous functions of the temperature and hence, the ’linear’ ice displayed
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in Fig. 14 cannot exhibit any phase transition and/or a marked critical point. Moreover,

the molar entropy (5.2) of linear ice Slinear = R ln 2 = 5.763 JK−1mol−1 is in obvious con-

tradiction with the experimentally measured value Sexp = R ln 1.507 = 3.409 JK−1mol−1.

The main reason for this discrepancy lies evidently in the hydrogen-bonding of the lin-

ear ice, whose water molecules are bonded by a couple of hydrogen bonds to two nearest-

neighbouring water molecules. Contrary to this, each water molecule is hydrogen-bonded

to four different water molecules in the real ice. The simplest plausible ice model of the

completely hydrogen-bonded water crystal thus represents 2D ice model on a square lat-

tice, since this lattice has the appropriate coordination number ensuring hydrogen bonding

to four different water molecules. However, the evaluation of the partition function in a

closed form is an extremely difficult task for the ’square’ ice and this problem has been

exactly solved by sophisticated mathematical procedure developed by E. H. Lieb in 1967

[23]. It is noteworthy that the Lieb’s exact result for the residual entropy of square ice

Ssquare = 3
2
R ln 4

3
= 3.588 JK−1mol−1 is strikingly close to the rough Pauling’s estimate

based on simple heuristic arguments [21]. Anyway, the crude Pauling’s explanation of the

residual entropy of square ice is one of the most accurate estimations in the condensed

matter physics at all and it can be made in the following way. By neglecting the bound-

ary effects, the square lattice of N vertices has in total 2N edges and there are merely 2

arrow orientations allowed per each its edge. So, there exist in total 22N different arrow

configurations by covering all edges of the square lattice precisely by one arrow. However,

some of these arrow configurations violate the ice rule and thus, the additional factor 6
16

must be taken into consideration because only 6 from 16 possible vertex configurations

are allowed for each vertex according to the ice rule. In this respect, the partition function

of the square ice model reads

Z = 22N
(

6

16

)N

=
(

3

2

)N

, (5.3)

which gives in the thermodynamic limit the entropy SPauling = R ln 3
2

= 3.371 JK−1mol−1.

This value of residual entropy is remarkably close to the Lieb’s exact result for the en-

tropy of the square ice [23] and what is still more surprising, it is even closer to the

experimentally measured value than the Lieb’s exact result.
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5.1.2 KDP Model of Ferroelectrics

Potassium dihydrogen phosphate KH2PO4, to be further abbreviated as KDP, is an impor-

tant representative of hydrogen-bonded ferroelectric crystals with a sharp phase transition

at Tc = 123 K. Below this critical temperature, KDP is a ferroelectric with the non-zero

spontaneous polarization even in zero external electric field, while it becomes paraelectric

without any spontaneous polarization above and at the critical temperature. This is a

generic feature of a large number of ferroelectric crystals in which hydrogen ions are lo-

cated between bulky anion groups (like phosphate group in KDP) so that the ferroelectric

crystal is in fact a hydrogen-bonded lattice with the positions of large anion groups as lat-

tice vertices. It turns out that the equilibrium positions of hydrogen ions are closer to one

of two bulky anions and this leads to an onset of the non-zero spontaneous polarization

at sufficiently low temperatures. In this respect, the position of hydrogen ions determines

a state of the ferroelectric crystal. It is noteworthy that the ferroelectric crystals with

the outstanding order of hydrogen ions like KDP can be specified by the rule analogous

to Pauling’s ice rule [21], which disallows so-called charged configurations connected with

the hydrogen bonding to the anionic part of the constituent molecule. It means that

this simple electrostatic picture excludes the configurations with the lack or excess of

hydrogen ions leading to a charge accumulation, which consequently increases the overall

electrostatic energy of the ferroelectric crystal. In this part, we shall provide an accurate

solution for 1D analogue of KDP model, which was suggested for the hydrogen-bonded

ferroelectric crystals by J. C. Slater in 1941 [22]. It should be remarked that the exact

treatment presented hereafter closely follows the ingenious and fairly simple derivation

developed by J. F. Nagle (1968) [24].

Let us consider 1D chain of KDP molecules (vertices), which are joined by double

hydrogen bonds as schematically illustrated in Fig. 16. In this figure, the potassium

cations K+ are denoted by open circles, the hydrogen ions H+ are represented by filled

circles and the positions of the phosphate anions PO3−
4 are represented by tetrahedra.

1D ferroelectric crystal of KDP is held together by hydrogen bonds, whereas each pair of

nearest-neighbouring phosphate groups is joined through two hydrogen bonds. The basic

assumption is that the energy of 1D KDP model consists of the sum of single phosphate
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Figure 16: The linear crystal of KDP molecules. The potassium cations K+ are denoted by

large open circles, the hydrogen ions H+ by small filled circles and the phosphate groups PO3−
4

are represented by tetrahedra.

group energies, which are assigned according to the Slater’s rules [22]:

• if a phosphate group has two hydrogen cations close by on the same side, such as

the group A in Fig. 16, then, it possesses zero energy ε = 0;

• if a phosphate group has two hydrogen cations close by on two different sides, such

as the groups B and C in Fig. 16, then, it possesses a finite amount of energy

ε = ε0 > 0;

• if a phosphate group has zero, one, three or four hydrogen cations close by, such as

the groups D and E in Fig. 16, then, it possesses infinite energy ε → ∞.

Notice that all aforementioned energy assignments have a plausible explanation in a sim-

ple electrostatic picture of 1D ferroelectric crystal constituted by charged K+, H+ and

PO3−
4 ions (see Fig. 16). First, it should be realized that a negative charge of the phos-

phate group is balanced by a positive charge of one potassium and two hydrogen cations

in order to ensure the electroneutrality condition of each KDP molecule. However, it

should be also mentioned that the mass of the phosphate group as well as the one of the

potassium cation are much larger than the mass of the hydrogen cation. Hence, it follows

that the phosphate groups and the potassium cations can just barely change their rigid

positions in a crystal, while the hydrogen cations can change their lattice positions the

most easily because of their light mass. Obviously, the third rule energetically prohibits

all configurations with other than two hydrogen cations nearby each phosphate group,

since this would lead to a net accumulation of charge that should cost a large amount

of electrostatic energy. Therefore, the infinite energy is assigned to these ionized states,
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which are consequently completely disregarded within this approximation. It is somewhat

more difficult to explain the assignment of higher energy to the phosphate groups of B

and C type in comparison with the phosphate group A, because the hydrogen cations are

closer together just in the phosphate group A. It is therefore necessary to consider also the

electrostatic repulsion between the potassium and hydrogen cations in order to shed light

on the energy difference between the configurations with two hydrogen cations nearby the

phosphate group. Namely, two hydrogen cations are effectively shielded from the elec-

trostatic force of the larger potassium cation by the bulky assymetric phosphate group

A and moreover, the potassium cation has a tendency to move closer to the phosphate

anion in order to enhance its distance with respect to the closest pair of hydrogen ions.

This mechanism cannot evidently occur in the phosphate groups B and C, which have the

hydrogen cations on both sides of the phosphate group and the potassium cations have a

tendency to lie in a center of the hydrogen bonds between the two nearest-neighbouring

phosphate groups.

Now, let us define 1D KDP model of ferroelectric crystal, which obeys the aforemen-

tioned rules and consists of N KDP molecules. For convenience, let us also consider the

periodic boundary conditions so that 1D chain becomes a ring. The partition function of

1D KDP model reads

Z =
∑

config.

exp

(

−β
N
∑

i=1

εi

)

=
∑

config.

N
∏

i=1

exp(−βεi), (5.4)

where the first summation is carried out over all possible configurations of the hydrogen

ions in the closed chain and the second summation runs over configurational energies of all

phosphate groups assigned according to the aforedescribed rules. The position of hydrogen

ions (hydrogen bonding) determines the overall configurational energy of the phosphate

groups, which are being on the left-hand-side and right-hand-side with respect to them.

Altogether, there exist in total six possible microstates around each phosphate group

(vertex), which are diagrammatically shown in Fig. 17 together with their configurational

energies. That is why the ferroelectric KDP model is also called as the six-vertex model. In

view of further manipulation, it is very appropriate to reformulate the six-vertex model

in terms of the arrow representation, which is introduced through Fig. 18. The arrow

representation of the six-vertex model can be obtained following this rule: if the hydrogen
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e = 0 e = 0               e = e                e = e e = e e = e0 0 0 0

1                     2                     3                     4                    5                     6

PO4

3-
H

+

Figure 17: Six possible microstates of KDP molecule, which have two hydrogen ions (small

filled circles) close by the bulky phosphate group (vertices = large filled circles).

1                     2                     3                     4                    5                     6
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Figure 18: The arrow representation of the six possible microstates depicted in Fig. 17. The

greatest arrow illustrates the overall dipole moment of each configuration.

is close by (i.e. forms a covalent bond with) the phosphate group, then draw an arrow

pointing outwards a vertex, otherwise draw an arrow pointing inwards a vertex. In such

a way, six possible hydrogen configurations depicted in Fig. 17 can be redrawn with the

help of six arrow configurations shown in Fig. 18.

It is not very difficult to obtain the exact solution of the model under investigation by

employing the transfer-matrix approach invented by J. F. Nagle [24]. Let us choose a pair

of hydrogen bonds joining the (i− 1)st and ith phosphate groups (vertices). This pair of

hydrogen bonds might have four different hydrogen (arrow) configurations LLi−1, LRi−1,

RLi−1 and RRi−1, where L and R refer to the position of hydrogen ions on the left side and

right side of the bond, respectively. Accordingly, the hydrogen position L corresponds to

an arrow configuration pointing inwards the former (i−1)st vertex, whereas the hydrogen

position R corresponds to an arrow configuration pointing inwards the latter ith vertex.

At this stage, it is appropriate to introduce the following transfer matrix

T ≡ exp(−βεi) =





















1 0 0 0

0 exp(−βε0) exp(−βε0) 0

0 exp(−βε0) exp(−βε0) 0

0 0 0 1




















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1                     2                     3                     4                    5                     6
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Figure 19: The hydrogen and arrow representations of all sixteen microstates, whose Boltz-

mann’s weights act as the entries of the transfer matrix (5.5).

=





















T (LLi−1, LLi) T (LLi−1, LRi) T (LLi−1, RLi) T (LLi−1, RRi)

T (LRi−1, LLi) T (LRi−1, LRi) T (LRi−1, RLi) T (LRi−1, RRi)

T (RLi−1, LLi) T (RLi−1, LRi) T (RLi−1, RLi) T (RLi−1, RRi)

T (RRi−1, LLi) T (RRi−1, LRi) T (RRi−1, RLi) T (RRi−1, RRi)





















. (5.5)

Apparently, the rows of the above transfer matrix determine the arrow configuration join-

ing (i− 1)st and ith vertices, while its columns determine the arrow configuration joining

ith and (i + 1)st vertices. In this way, the transfer matrix (5.5) unambiguously deter-

mines the configuration of hydrogen ions (arrows) on both sides of the ith phosphate

group (vertex) and thus, it also determines its available energies and Boltzmann’s factors.

In the consequence of that, the entries of the transfer matrix (5.5) are nothing but the

Boltzmann’s factors, which are associated with the particular arrow (hydrogen ion) config-

urations. For better understanding, all sixteen configurations serving as the entries of the

transfer matrix (5.5) are displayed in Fig. 19 together with their configurational energies.

As one can see from this figure, ten from sixteen configurations have zero Boltzmann’s

weights owing to the infinite energy of forbidden ionized states. The remaining six config-

urations with the non-zero Boltzmann’s factors correspond to the allowed configurations

(Figs. 17 and 18) satisfying the Slater’s rules.

When the substitution of the transfer matrix (5.5) to Eq. (5.4) is successively followed
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by the multiplication of all transfer matrices, the partition function of 1D KDP model

can be expressed as a trace over the final result of this matrix product

Z = Tr
[

TN(ε1, ε2, ε3, ε4, ε5, ε6)
]

=
4
∑

i=1

λN
i (5.6)

and this trace is simply equal to a sum over all eigenvalues of the transfer matrix (5.5)

raised to the Nth power. The sought eigenvalues of the transfer matrix (5.5) can readily

be calculated by solving the secular determinant
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 − λ 0 0 0

0 exp(−βε0) − λ exp(−βε0) 0

0 exp(−βε0) exp(−βε0) − λ 0

0 0 0 1 − λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0, (5.7)

which yields after straightforward calculation a complete spectrum of eigenvalues

λ1,2 = 1, λ3 = 2 exp(−βε0), and λ4 = 0. (5.8)

Regarding this, the canonical partition function of the 1D KDP model is simply obtained

by substituting the eigenvalues (5.8) to Eq. (5.6)

Z = 2 + 2N exp(−βNε0). (5.9)

From here onward, all thermodynamic quantities follow straightforwardly. As a matter

of fact, the Helmholtz free energy can be obtained from Eq. (1.4)

F = −kBT ln
[

2 + 2N exp(−βNε0)
]

, (5.10)

while the internal energy can be the most readily obtained by adopting Eq. (1.3)

U = Nε0
2N exp(−βNε0)

2 + 2N exp(−βNε0)
. (5.11)

It can be easily shown from Eqs. (5.10) and (5.11) that 1D KDP model exhibits in the

thermodynamic limit (N → ∞) very peculiar phase transition. Consider for instance

the internal energy U . It immediately follows from Eq. (5.11) that the internal energy

normalized per one KDP molecule is given by

U
Nε0

= lim
N→∞

2N exp(−βNε0)

2 + 2N exp(−βNε0)
=
{ 0 if exp(βε0) > 2;

1 if exp(βε0) < 2.
(5.12)
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Thus, there exist two temperature intervals, where the internal energy of 1D KDP model

has two completely different values

if
kBT

ε0

<
1

ln 2
then U1 = 0, (5.13)

if
kBT

ε0

>
1

ln 2
then U2 = Nε0. (5.14)

According to this, the temperature kBTc = ε0/ ln 2 represents a critical temperature at

which the internal energy changes discontinuously. The abrupt change of the internal

energy is being a typical feature of the first-order (discontinuous) phase transitions, so

it is of particular interest to look at the entropy change of this phase transition. The

entropy can be easily obtained from Eq. (1.4)

S =
U
T

+ kB lnZ =
Nε0

T

2N exp(−βNε0)

2 + 2N exp(−βNε0)
+ kB ln

[

2 + 2N exp(−βNε0)
]

. (5.15)

Evidently, Eq. (5.15) predicts for two temperature intervals, where the macrosystem has

two different internal energies, also two different entropies

if
kBT

ε0

<
1

ln 2
then

S1

NkB

= 0, (5.16)

if
kBT

ε0

>
1

ln 2
then

S2

NkB

= ln 2. (5.17)

Owing to this fact, even smooth temperature change over the temperature interval con-

taining the critical point kBTc = ε0/ ln 2 leads to an abrupt change of the entropy

∆S = S2 − S1 = NkB ln 2. Therefore, the finite amount of the latent heat L = Tc∆S =

NkBTc ln 2 = Nε0 must be either absorbed or released at a critical point of the first-order

phase transition from the low- to high-temperature phase or vice versa. Note that stan-

dard thermodynamical-statistical relations can be used for calculating other important

thermodynamical properties of ferroelectrics such as spontaneous polarization, specific

heat, enthalpy, etc.

Now, let us bring a deeper insight into the phase transitions and critical phenomena

of 1D KDP model by detailed analysis of its available macrostates. If the assymetric con-

figuration with two hydrogen cations on the same side of a certain vertex (in other words,

the arrow configuration with two inwards pointing arrows on the same side of a certain

vertex) is selected, then, all the other vertices must necessarily have the same assymetric
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configuration around them. In the consequence of that, the two assymetric microstates

with zero energy cannot be mixed with the other four microstates with non-zero energy ε0

in order to form some macrostate. As a result, there exist just two possible macrostates

containing merely the assymetric microstates with zero energy; the one with all vertices

having inward pointing arrows from the left-hand-side and the other one with all vertices

having inward pointing arrows from the right-hand-side (see Fig. 15a-b). The overall en-

ergy of both these macrostates is certainly zero and this corresponds to two Boltzmann’s

factors equal to unity. On the other hand, if the configuration with two hydrogen cations

on two different sides of a certain vertex (in other words, the arrow configuration with two

inwards pointing arrows on two different sides of a certain vertex) is chosen, then, there

are always two possibilities how to arrange the configuration of hydrogen ions (arrows) on

its nearest-neighbouring vertices. Therefore, there exists the second type of macrostates,

which are constituted by to a certain extent random arrangement of the four microstates

with non-zero energy ε0 (see Fig. 15c). In this respect, we have in total another 2N

macrostates with the overall energy Nε0 (each of them consists of N microstates with the

energy ε0) and thus, these macrostates contribute to the partition function by the Boltz-

mann’s factor 2N exp(−βNε0). In this way, we have recovered the partition function (5.9)

without performing the extended calculation relying on the transfer-matrix approach.

At first sight, the results presented in this section seem to be in contradiction with the

well known fact that 1D models with short-range forces cannot exhibit a phase transition

towards a spontaneously ordered phase. However, it should be stressed that one of the

conditional assumptions of this dictum is that the potential arising from short-range forces

cannot be singular. It is quite obvious that 1D KDP model based on the Slater’s rules

violates this assumption due to the assignment of infinite energy to ionized phosphate

groups, which do not have precisely two hydrogen ions close by. In this respect, it could

be expected that more realistic energy assignment with a rather strong but finite vertex

energies should resolve this problem (see the modified Takagi’s KDP model discussed

below). What is even more surprising, the ingenious and rather complex exact solutions

of 2D Slater’s KDP model achieved by B. Sutherland [25] and E. H. Lieb [26] have

confirmed a presence of the analogous first-order phase transition to emerge at the same

84



5.1 Six-Vertex Models 5 ICE-TYPE MODELS

1                     2                     3                     4                    5                     6

e = 0 e = 0               e = e                e = e e = e e = e0 0 0 0

RRRR             LLLL LRRL RLLR             LRLR            RLRL

7                     8                     9                    10                   11                  12

e = 2e             e = 2e              e = e                e = e e = e e = e1 1 1 1 1 1

RRLL LLRR            RLRR             LRRR            LLLR             LLRL

13                   14                   15 16

e = e               e = e e = e e = e1 1 1 1

RRLR            RRRL RLLL LRLL

Figure 20: The hydrogen and arrow representations of sixteen microstates, whose Boltzmann’s

weights act as the entries of the transfer matrix (5.18) in Takagi’s 1D KDP model.

critical temperature in 2D Slater’s KDP model on the square lattice as well.

Let us modify Slater’s 1D KDP model by considering more realistic energy assignments

to ionized configurations of the phosphate group. Of course, the energy of the phosphate

group with other than two hydrogen cations close by must necessarily increase due to a net

accumulation of charge, which costs an additional amount of electrostatic energy. Takagi’s

1D KDP model of hydrogen-bonded ferroelectrics [27] relies on a plausible assumption that

the once ionized configurations with one or three hydrogen cations in the close vicinity

of the phosphate group have the energy ε1 ≫ ε0, while the twice ionized configurations

with zero or four hydrogen cations nearby the phosphate group have roughly twice as

large energy ε2 = 2ε1. For illustration, Fig. 15 shows all sixteen available configurations

together with their corresponding configurational energies. With regard to this, there are

no forbidden configurations within Takagi’s KDP model and the model is essentially the

sixteen-vertex model.

The exact solution of the Takagi’s 1D KDP model can be acquired by adopting the

approach, which was invented by J. F. Nagle (1968) [24] to obtain the exact solution of the

Slater’s 1D KDP model as explained in the preceding part. The most crucial difference

consists in the modified Boltzmann’s weights, which are schematically depicted in Fig. 20

and which change the entries of the transfer matrix (5.5) to
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T ≡ exp(−βεi) =





















1 exp(−βε1) exp(−βε1) exp(−2βε1)

exp(−βε1) exp(−βε0) exp(−βε0) exp(−βε1)

exp(−βε1) exp(−βε0) exp(−βε0) exp(−βε1)

exp(−2βε1) exp(−βε1) exp(−βε1) 1





















. (5.18)

The eigenvalues of the transfer matrix (5.18) are then given by the condition
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 − λ exp(−βε1) exp(−βε1) exp(−2βε1)

exp(−βε1) exp(−βε0) − λ exp(−βε0) exp(−βε1)

exp(−βε1) exp(−βε0) exp(−βε0) − λ exp(−βε1)

exp(−2βε1) exp(−βε1) exp(−βε1) 1 − λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0, (5.19)

which yields after a little bit more involved calculation a complete set of the eigenvalues

λ1,2 =
1

2
[1 + 2 exp(−βε0) + exp(−2βε1)]

±1

2

√

[1 − 2 exp(−βε0) + exp(−2βε1)]
2 + 16 exp(−2βε1),

λ3 = 1 − exp(−2βε1), λ4 = 0. (5.20)

It can be easily verified that the largest eigenvalue is the quadratic root with the plus

sign irrespective of the temperature and thus, the Helmholtz free energy of the Takagi’s

1D KDP model reduced per one KDP molecule becomes in the thermodynamic limit

F = −kBT lim
N→∞

1

N
lnZ = −kBT ln λmax. (5.21)

This result means that the Helmholtz free energy is an analytic function of the temperature

and thence, it follows that there does not occur any phase transition in the modified

Takagi’s 1D KDP model. This result is in accordance with our expectations, since 1D

models with short-range forces cannot exhibit a phase transition towards spontaneously

ordered phase once the conditional assumption of the non-singular potential is fulfilled.

5.2 Symmetric Eight-Vertex Model

In this part, we shall consider the so-called zero-field (symmetric) eight-vertex model that

has symmetrically equal energies

ε1 = ε2, ε3 = ε4, ε5 = ε6, ε7 = ε8, (5.22)
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1                   2                   3                    4                   5                   6                   7                    8

e1 e                    e                    e                   e                    e e                    e2 3 4 5 6 7 8

Figure 21: Eight possible arrow configurations of the eight-vertex model.

for four pairs of vertex configurations displayed in Fig. 21. The condition (5.22) ensures

that the energy of the considered model remains unchanged by reversing all arrows (dipole

moments), what fully corresponds to the situation of ferroelectric (ferromagnetic) mate-

rials in an absence of the external electric (magnetic) field. Hence, the model with the

energy assignment (5.22) is also referred to as the zero-field eight-vertex model.

First, let us make few remarks why to study the zero-field eight-vertex model, which

seems at first sight very similarly as the six-vertex models. The reason is as follows: the

six-vertex models evidently exhibit a pathological critical behaviour because all their low-

temperature ordered states are ’frozen’ in that their perfect ordering cannot be disturbed

by the temperature unless the critical point is reached. From this point of view, the

ordered states exhibit physical properties that do not diverge or vanish near the critical

temperature as simple powers of the difference T − Tc and thus, they cannot be charac-

terized by the set of critical exponents (1.17). It is quite apparent that this pathological

critical behaviour originates from the fact that individual vertex configurations cannot

be changed within the completely ordered state, which is energetically favored below the

critical temperature, since this would cost an infinite amount of the energy.

Owing to these facts, B. Sutherland (1970) [28], C. Fan and F. Y. Wu (1970) [29]

suggested the generalized ice-type model by the rule: the only allowed arrow configura-

tions of a vertex are those with an even number of arrows pointing inwards or outwards

a vertex. The model satisfying this rule is called the eight-vertex model and this model

permits another two arrow configurations besides the usual ones allowed by the ice rule.

One of the most fundamental properties of the eight-vertex model is that two new vertex

configurations with all arrows pointing inwards or outwards a vertex enable arrow rever-

sals, which cost a finite amount of energy even within the low-temperature ordered states.

Accordingly, the rising temperature might in principle gradually destroy the perfect or-

dering of the ordered state and one may hope that the eight-vertex model will be in this
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respect less pathological than the six-vertex one.

5.2.1 Linear Eight-Vertex Model

The linear eight-vertex model defined through the energy assignment (5.22) can be exactly

treated with the help of the same transfer-matrix approach as used for its six-vertex

analogue. With regard to this, we shall leave out all the particular details and we shall

present merely the most fundamental steps of this calculation. By assuming the periodic

boundary condition, the partition function of 1D eight-vertex model can be defined as

Z =
∑

config.

exp

(

−β
N
∑

i=1

Ei

)

, (5.23)

where the first summation is carried out over all possible arrow configurations of the eight-

vertex model and the second summation enumerates all individual vertex energies within

each macrostate. There also exists an alternative definition of the partition function

Z =
∑

config.

exp



−β
8
∑

j=1

nc
jεj



 , (5.24)

where the latter summation runs over eight possible vertex configurations and the number

nc
j enumerates a total number of vertices that have the same arrow configuration within

each vertex configuration. In the spirit of the former definition, the partition function of

the linear eight-vertex model can be calculated as a trace of the transfer matrix raised to

the Nth power and this trace is directly equal to a sum over all its eigenvalues

Z = Tr
[

TN(ε1, ε3, ε5, ε7)
]

=
4
∑

i=1

λN
i , (5.25)

whereas the relevant transfer matrix can be defined as

T ≡





















T (LLi−1, LLi) T (LLi−1, LRi) T (LLi−1, RLi) T (LLi−1, RRi)

T (LRi−1, LLi) T (LRi−1, LRi) T (LRi−1, RLi) T (LRi−1, RRi)

T (RLi−1, LLi) T (RLi−1, LRi) T (RLi−1, RLi) T (RLi−1, RRi)

T (RRi−1, LLi) T (RRi−1, LRi) T (RRi−1, RLi) T (RRi−1, RRi)





















=





















exp(−βε1) 0 0 exp(−βε7)

0 exp(−βε3) exp(−βε5) 0

0 exp(−βε5) exp(−βε3) 0

exp(−βε7) 0 0 exp(−βε1)





















. (5.26)
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The straightforward calculation relying on the secular equation consecutively yields a

complete spectrum of eigenvalues of the transfer matrix (5.26)

λ1,2 = exp(−βε1) ± exp(−βε7), λ3,4 = exp(−βε3) ± exp(−βε5). (5.27)

It is quite evident from Eq. (5.27) that the largest eigenvalue is one of two eigenvalues

with the plus sign and hence, it follows that the largest eigenvalue might possibly change

with temperature. In this respect, the suitable choice of the vertex energies ε1, ε3, ε5 and

ε7 could entail an occurence of the discontinuous (first-order) transition even in the linear

eight-vertex model.

Let us analyse several particular cases of the linear eight-vertex model by restricting

the vertex energies ε1, ε3, ε5 and ε7 up to three different values. It is noteworthy that two

pairs of vertex energies (ε1, ε7) and (ε3, ε5) enter symmetrically into two eigenvalues

λ1 = exp(−βε1) + exp(−βε7), λ3 = exp(−βε3) + exp(−βε5). (5.28)

which determine the largest eigenvalue of the transfer matrix and consequently, the one of

vertex energies (say ε1) can be considered without loss of the generality as the smallest one

ε1 = min{ε1, ε3, ε5, ε7}. Under these circumstances, the phase transition might possibly

occur just when ε3 = ε5 and ε1 6= ε7, whilst there does not occur any phase transition as

long as one vertex energy from the first pair (ε1, ε7) is equal at least to one vertex energy

from the second pair (ε3, ε5) or vice versa.

Bearing this in mind, the particular case with the vertex energies ε1 < ε7 6= ε3 = ε5

might possibly exhibit a phase transition and it is therefore the most valuable for further

investigation. Under these conditions, the eigenvalue λ1 represents the largest eigenvalue

if and only if

λ1 > λ3 ⇐⇒ x + xn > 2xm, (5.29)

where the function x ≡ exp(−βε1) can be regarded as a new rescaled temperature variable

bounded to the interval x ∈ [0; 1], n = ε7/ε1 and m = ε3/ε1 are positive real numbers

greater than one that determine the relation between the lowest vertex energy ε1 and the

higher vertex energies ε3, ε5 and ε7. The necessary and sufficient condition for an appear-

ance of phase transition can be found with the aid of inequality between the arithmetic
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and geometric means, which is further abbreviated as AG inequality16. By applying AG

inequality one readily proves that

x + xn

2
≥

√
xxn, (5.30)

x + xn ≥ 2x
n+1

2 . (5.31)

If

m >
n + 1

2
(5.32)

then

xm < x
n+1

2 , (5.33)

since the new temperature variable x is bounded to the interval x ∈ [0; 1]. By combining

the inequalities (5.31) and (5.33) one gets

x + xn > 2xm, (5.34)

which is valid whenever the condition (5.32) is met. In this respect, the condition (5.32)

represents the necessary and sufficient condition that ensures an absence of the phase

transition due to the validity of inequality λ1 > λ3 between the two largest eigenvalues in

the whole temperature range. On the other hand, the inverted condition

m <
n + 1

2
⇐⇒ n > 2m − 1 ⇐⇒ ε7 > 2ε3 − ε1. (5.35)

must represents the necessary and sufficient condition ensuring an appearance of the first-

order phase transition in the linear zero-field eight-vertex model. Accordingly, the energy

ε7 of two new vertex configurations with all arrows pointing inwards or outwards a vertex

must be much larger than the second largest vertex energy ε3 (remember that ε1 is the

smallest vertex energy).

At this stage, let us confirm an occurrence of phase transition by exploring some

particular case that matches the requirement (5.35). For this purpose, we shall investigate

16AG inequality states that the arithmetic mean of a set of non-negative real numbers is greater than or

equal to the geometric mean of the same set of non-negative real numbers x1+x2+...+xn

n
≥ n

√
x1x2 . . . xn.

The equality holds if and only if all numbers from this set are equal one to each other x1 = x2 = . . . = xn.
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in detail the special case with the vertex energies ε1, ε3 = ε5 = 3ε1 and ε7 = 7ε1 (m = 3

and n = 7). The critical condition that determines the critical temperature Tc (xc) is

given by the equality between the two largest eigenvalues

λ1c = λ3c ⇐⇒ xc + x7
c = 2x3

c. (5.36)

It is quite obvious that the above equation is a single-variable polynomial of degree seven,

which should have according to the fundamental theorem of algebra as many complex

roots as its degree17. After the elementary calculation, one indeed finds seven different

complex roots

x1 = 0, x2,3 = ±1 and x4,5,6,7 = ±
√

−1

2
±

√
5

2
. (5.37)

The only physical root, which is from inside the interval x ∈ [0; 1], then determines a

critical point of the discontinuous phase transition to emerge at finite temperature

xc =

√√
5 − 1

2
. (5.38)

The aforelisted equation is consistent with this exact value of the critical temperature

kBTc

ε1

=
2

ln
(√

5−1
2

) . (5.39)

Note that the largest eigenvalue is equal to λ1 below this critical temperature (T < Tc ⇔
x < xc), while above it λ3 becomes the largest eigenvalue. It is easy to check from

Eq. (5.35) that the internal energy of the low-temperature ordered (ferroelectric) and the

high-temperature disordered (paraelectric) phases must follow the relations

if T < Tc then
U1

Nε1

=
x + nxn

x + xn
, (5.40)

if T > Tc then
U2

Nε1

= 2m, (5.41)

while the entropy of both these phases obeys the relations

if T < Tc then S1 =
Nε1

T

x + nxn

x + xn
+ NkB ln(x + xn), (5.42)

if T > Tc then S2 = NkB ln 2. (5.43)

17The fundamental theorem of algebra states that each single-variable polynomial equation has exactly

as many complex roots as its degree if its repeated roots are counted according to their multiplicity.
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In the consequence of that, the latent heat

L = Tc∆S = N
(n − 1)xn

c − (m − 1)xm
c

xc + xn
c

(5.44)

as a generic feature of the discontinuous phase transition must be either absorbed or

released at a critical point.

5.2.2 Square Lattice Eight-Vertex Model

As it has been shown in the preceding part, the linear zero-field eight-vertex model may

exhibit a similar discontinuous phase transition as 1D KDP model does on behalf of a

singular potential assigned to vertex configurations with an odd number of arrows pointing

inwards or outwards a vertex. However, the most important progress achieved by solving

the linear zero-field eight-vertex model consists in the fact that this model sheds light

on how the rising temperature gradually destroys the spontaneous ordering to emerge at

sufficiently low temperatures. In addition, 2D zero-field eight-vertex models exhibit much

more complex critical behaviour compared to their six-vertex analogues, which show the

discontinuous phase transition at the same critical temperature independently of their

spatial dimensionality (J. F. Nagle [30]).

In order to provide a deeper insight into an intricate critical phenomena of the eight-

vertex model on the higher-dimensional lattices, let us look a little bit more closely at the

zero-field eight-vertex model on the square lattice. The eight arrow arrangements allowed

for a vertex are schematically illustrated in Fig. 22 and the vertex energies are pairwise

equal to each other as required by the zero-field condition (5.22). It should be remarked

that the latter two equalities ε5 = ε6 and ε7 = ε8 do not actually represent any restriction.

As a matter of fact, the vertices with configurational energies ε7 and ε8 represent sinks and

sources of arrows, respectively, and if the toroidal boundary condition is imposed their

total number must necessarily be the same within each allowable macrostate. Similarly,

the vertex with configurational energy ε5 is a sink of horizontal arrows and a source of

vertical arrows, while the opposite is true for the vertex with configurational energy ε6.

In this respect, the total number of vertices with the configurational energy ε5 must be

necessarily equal to the total number of vertices with the configurational energy ε6. As
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e1 e e e e e e e2 3 4 5 6 7 8

1               2 3              4               5 6               7              8

Figure 22: Eight possible arrow configurations of the eight-vertex model on a square lattice.

e1 e e e e e e e2 3 4 5 6 7 8

1 2 3              4               5              6               7 8

Figure 23: The bond representation of the eight possible arrow configurations shown in Fig. 22.

a result, the vertex energies ε5, ε6, ε7 and ε8 occur in the partition function just in the

combinations ε5 + ε6 and ε7 + ε8, so one may choose without loss of the generality ε5 = ε6

and ε7 = ε8. The particularly interesting situation emerges if also another two symmetric

conditions ε1 = ε2 and ε3 = ε4 are imposed, since the vertex energies then become

invariant under the reversal of all arrows and thus, the eight-vertex model possesses a

remarkably high symmetry.

The eight-vertex model has been previously introduced in terms of the arrow rep-

resentation as a generalization of the six-vertex model, however, it should be remarked

that there are several alternative ways how to formulate it. Figs. 22 and 23 show the

connection between the arrow and bond representations. The bond configuration can be

obtained from the corresponding arrow configuration by following this rule: if an arrow

points up or to right, then draw a broken line instead of an arrow, otherwise draw a solid

line. In this way, the arrow representation of the eight-vertex model can be transformed

into the line graph of closed polygons, because only even number of lines can meet at

a vertex. From this point of view, the bond representation of the eight-vertex model

strongly resembles the configuration line graphs of the Ising model to be obtained by

means of the dual transformation. Note that this conformity is not accidental, since the

zero-field eight-vertex model is nothing else as the generalization of the Ising model as

firstly remarked in 1971 by F. Y. Wu [31], L. P. Kadanoff and R. J. Wegner [32].

Let us prove the above statement. First, consider the square lattice S and its dual
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Figure 24: Eight possible line configurations for a vertex of the eight-vertex model on a square

lattice and their corresponding spin configurations at vertices of its dual lattice.

lattice D (Fig. 3a). Remember that vertices of the dual lattice D are obtained by situ-

ating a vertex at centers of each face of the original square lattice S. If the Ising spins

are located at vertices of the dual lattice D, then, there exist two-to-one correspondence

between the spin configurations on the dual lattice D and, respectively, the polygon con-

figurations on the original square lattice S. As a matter of fact, one and just one (unique)

polygon configuration on the original square lattice L can be constructed from any spin

configuration on the dual lattice D as follows: draw solid lines on edges of the square

lattice L if they separate unlike spins placed on the dual lattice D, otherwise draw broken

lines. Conversely, there correspond two different spin configurations on the dual lattice D
(one is being obtained from the other by reversing all spins) to each polygon line graph

on the square lattice L. The correspondence between the spin and line configurations

available for each vertex is diagrammatically displayed in Fig. 24. Accordingly, the par-

tition function of the eight-vertex model Z8−v on the square lattice L can be related to

the partition function of some spin-1/2 Ising model ZIsing on its dual lattice D

Z8−v =
1

2
ZIsing. (5.45)

The factor 1
2

comes from the two-to-one mapping between spin and vertex configurations.

Let us validitate the mapping relation (5.45) between both the partition functions by

supplying a missing connection between interaction parameters of both these models. The

most general Hamiltonian of the spin-1/2 Ising model on the square lattice of M rows

and N columns (the periodic boundary conditions are imposed and M = N), which is

invariant with respect to the reversal of all spins, reads

H = −
M
∑

i=1

N
∑

j=1

(

J0 + Jhσi,jσi,j+1 + Jvσi,jσi+1,j + Jσi,j+1σi+1,j

+ J ′σi,jσi+1,j+1 + J ′′σi,jσi,j+1σi+1,jσi+1,j+1

)

, (5.46)
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- - ´J J

- ´´J

Figure 25: The interaction terms of the most general spin-1/2 Ising model on a square lattice,

which preserves a complete spin reversal symmetry.

where J0 is an additive constant, Jh and Jv denote the nearest-neighbour spin-spin in-

teractions in the horizontal and vertical directions, respectively, J and J ′ represent the

second-neighbour spin-spin interactions along two different diagonal directions and J ′′

labels the interaction between four corner spins forming an elementary face (square pla-

quette) of the dual lattice D. The total Hamiltonian (5.46) can also be written as a sum

of face Hamiltonians H =
∑

k∈2

Hk, where the indicated summation runs over all square

faces of the dual lattice D. In this respect, each face Hamiltonian Hk involves all the

interaction terms surrounding one vertex of the original square lattice L

Hk = − J0 −
Jh

2
(σi,jσi,j+1 + σi+1,jσi+1,j+1) −

Jv

2
(σi,jσi+1,j + σi,j+1σi+1,j+1)

− Jσi,j+1σi+1,j − J ′σi,jσi+1,j+1 − J ′′σi,jσi,j+1σi+1,jσi+1,j+1. (5.47)

The interaction terms entering into the face Hamiltonian are schematically shown in

Fig. 25 and each face Hamiltonian (5.47) contains only half of the horizontal and vertical

interactions in order to avoid a double counting of those interactions. The vertex ener-

gies can be now straightforwardly obtained by taking into account the mapping relation

between the spin and line configurations displayed in Fig. 24. For instance, the spin con-

figuration with four identical spins (all four spins are either ’up’ or ’down’) corresponds

according to this mapping to the vertex without any solid line and other vertex energies

can be obtained in a similar manner. In this way, it is easy to write down the vertex

energies with the help of Ising interactions

ε1 = −J0 − Jh − Jv − J − J ′ − J ′′, (5.48)

ε2 = −J0 + Jh + Jv − J − J ′ − J ′′, (5.49)
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ε3 = −J0 + Jh − Jv + J + J ′ − J ′′, (5.50)

ε4 = −J0 − Jh + Jv + J + J ′ − J ′′, (5.51)

ε5 = ε6 = −J0 − J + J ′ + J ′′, (5.52)

ε7 = ε8 = −J0 + J − J ′ + J ′′. (5.53)

In agreement with the aforementioned arguments, the vertex energies ε5 = ε6 and ε7 = ε8

are equal one to each other without loss of the generality. However, the zero-field eight-

vertex model necessitates the validity of another two equalities ε1 = ε2 and ε3 = ε4,

which can be simply achieved by setting Jh = Jv = 0. In this case, the vertex energies

(5.48)–(5.53) simplify to

ε1 = ε2 = −J0 − J − J ′ − J ′′, (5.54)

ε3 = ε4 = −J0 + J + J ′ − J ′′, (5.55)

ε5 = ε6 = −J0 − J + J ′ + J ′′, (5.56)

ε7 = ε8 = −J0 + J − J ′ + J ′′. (5.57)

Among other matters, the mapping relations (5.54)–(5.57) mean that the zero-field eight-

vertex model on the square lattice is equivalent to the spin-1/2 Ising model on two square

lattices, which are coupled together through the four-spin interaction [31, 32]. Of course,

the mapping relations (5.54)–(5.57) can also be inverted and the spin-1/2 Ising model

with two- and four-spin interactions can be expressed in terms of the equivalent zero-field

eight-vertex model

J0 = −1

4
(ε1 + ε3 + ε5 + ε7), (5.58)

J = −1

4
(ε1 − ε3 + ε5 − ε7), (5.59)

J ′ = −1

4
(ε1 − ε3 − ε5 + ε7), (5.60)

J ′′ = −1

4
(ε1 + ε3 − ε5 − ε7). (5.61)

Notice that the set of Eqs. (5.54)–(5.57) and (5.58)–(5.61) formally complete the proof

of an equivalence between the zero-field eight-vertex model and the general Ising model

with two- and four-spin interactions on a square lattice. From this point of view, the zero-

field eight-vertex model should exhibit a continuous (second-order) phase transition from
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the universality class of the nearest-neighbour Ising model once the four-spin interaction

J ′′ vanishes due to a particular equality between the vertex energies ε1 + ε3 = ε5 + ε7.

Nevertheless, the non-zero four-spin interaction of the general zero-field eight-vertex model

implies that this model might exhibit much more complex critical behaviour than the

nearest-neighbour Ising model without the four-spin interaction.

The zero-field eight-vertex model on the square lattice has been exactly solved by

R. J. Baxter (1972) [33] and this outstanding exact solution has opened up another in-

teresting issue in the field of phase transitions and critical phenomena. Namely, Baxter’s

exact solution predicts for the zero-field eight-vertex model a striking phase transition

whenever its Boltzmann’s weights ωi = exp[−βεi] (i = 1 − 8) satisfy the condition

ω1 + ω3 + ω5 + ω7 = 2max{ω1, ω3, ω5, ω7}. (5.62)

The most striking feature of these phase transitions is that their critical exponents (1.17)

α = α′ = 2 − π

µ
, β =

π

16µ
, ν = ν ′ =

π

2µ
, γ =

7π

8µ
, δ = 15, η =

1

4
(5.63)

vary as linear functions of the expression µ = 2 arctan
(√

ω5ω7/ω1ω3

)

depending on the

Boltzmann’s weights (interaction parameters) unlike the critical exponents of other ex-

actly solved models investigated previously. This means that the critical exponents of the

zero-field eight-vertex model might depend continuously on the energy parameters of the

model in contradiction with the ordinary universality hypothesis. It should be stressed,

however, that the critical exponents (5.63) obey the equalities (1.18)–(1.22) derived with

the help of the scaling hypothesis, what means that the universality and scaling hypothe-

ses are independent assumptions even although they are frequently coupled together.

As a matter of fact, the scaling hypothesis turns out to hold even within the zero-field

eight-vertex model, while the ordinary universality hypothesis fails. Baxter’s exact results

reported on the continuously varying critical exponents of the zero-field eight-vertex model

consecutively inspired M. Suzuki (1974) [34] to propose the weak universality hypothesis,

which allows changes of the critical exponents do not violating the concept based on the

scaling laws.
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Exercises

1. Reformulate 1D ice model in terms of the transfer-matrix method and find a complete

spectrum of eigenvalues of the relevant transfer matrix. Show that the Helmholtz free

energy, internal energy and entropy reduce in the thermodynamic limit to the results

presented in Eq. (5.2).

2. Find an exact solution for 1D analogue of antiferrolectric F model by employing the

transfer-matrix approach. The antiferroelectric F model suggested by F. Rys (1963) [35]

can be regarded as the six-vertex model defined through the six allowed arrow configura-

tions shown in Fig. 13 with the following vertex energies ε1 = ε2 = ε3 = ε4 = ε0 > 0 and

ε5 = ε6 = 0. Does the antiferroelectric F model exhibit a phase transition?

3. Calculate the spontaneous polarization of the low-temperature (ferroelectric) phase

within the linear zero-field eight-vertex model and discuss its dependence on the temper-

ature. Evaluate the spontaneous polarization at a critical point of the first-order phase

transition for the particular case with ε1, ε3 = ε5 = 3ε1 and ε7 = 7ε1 (m = 3 and n = 7).

4. Find out how the critical exponents of zero-field eight-vertex model on the square

lattice depend on the two- and four-spin interactions of its equivalent square lattice Ising

model. Verify whether the values of critical exponents are in the limit of vanishing four-

spin interaction from the standard Ising’s universality class.
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6 CONCLUSION

6 Conclusion

The present textbook was conceived as a slim knowledge source of the simplest exactly

solved models, which is suitable for undergraduate students who have an academic focus

in mathematical physics, statistical physics or condensed matter physics. In the present

state of science, it seems almost impossible to even enumerate the most notable exactly

solved models. Essentially, this textbook deals with the low-dimensional lattice-statistical

models such as the Ising, Heisenberg and vertex models. Although the original idea was

to provide a more comprehensive textbook including many other rigorously solved mod-

els like the spherical model [36], the mean-field model [37], the Baxter-Wu model [38],

the quantum XY model [39], the quantum Ising model [40] and the quantum Heisen-

berg model [19], however, this would be unreasonable due to considerable mathematical

complexities closely associated with their accurate treatment (Bethe-ansatz method [19],

Jordan-Wigner transformation [41], etc.). Contrary to this, it was rather tempting to use

just an unique powerful mathematical device, the transfer-matrix method, for obtaining

most of the exact solutions. With respect to this, the transfer-matrix technique represents

the main subject of the present course from the methodological point of view.

Before concluding, it should be noted that there are still many unresolved problems

to be tackled in the area of exactly solvable models, which are usually recognized as the

highest intellectual challenge for theoretical physicists [42]. The ambitious students who

wish to continue in studying this exciting research field are therefore referred to sev-

eral comprehensive monographs listed in the bibliography list at the beginning of this

textbook. Among these, I recommend R. J. Baxter’s book Exactly Solved Models in Sta-

tistical Mechanics as a starting follow-up literature, since this book represents advanced

but simultaneously sufficiently detailed tutorial review.
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