PHARMACOLOGY OF RESPIRATORY SYSTEM

Ladislav Mirossay

P. J. Šafárik University Faculty of Medicine Department of Pharmacology Košice

BRONCHIAL ASTHMA

- Syndrom of recurrent reversible obstruction of airways in response to stimulus
- Patient suffers from intermittent attacks of:
- dyspnoe, wheezing, cough
- respiratory failure
- expiration dyspnoe

Patologic & anatomic background

- Contraction of respiratory smooth muscles
- Mucosal edema
- Viscous mucin secretion in bronchial lumen

Participants of bronchial obstruction

Nature Reviews | Drug Discovery

Asthma bronchiale Particular step influence

- A. Environmental control
- B. Leukotriene antagonists
- c. Antihistamines
- D. Corticosteroids
- E. Anti-IgE therapy (omalizumab)

Pharmacologic intervention

• Edema & cell infiltration:

ANTIINFLAMMATORY DRUGS

• Smooth muscle contraction & bronchial obstruction:

BRONCHODILATING DRUGS

Ways of application

- Inhalatory
- aerosol
- dry powder
- Oral
- Inj.

Inhalatory application Spacer - children

ANTIINFLAMMATORY DRUGS

CORTICOSTEROIDS

 \Downarrow or modify inflammatory response of bronchi

INHIBITORS OF MASTOCYTE DEGRANULATION inflammatory & allergy mediator release

Inhaled corticosteroids ICS

- The most effetive method of SE diminution/elimination
- The most effetive long therm preventive therapy
- Early diagnosis & therapy prevents remodelation of airways
- Daily doses are minimal (in µg)

Selected drugs

Beclomethasone, budesonide & fluticasone with minimal systemic absorption & SE: mean daily doses: 100 - 2000 µg

• Minimal SE:

- oropharyngeal candidoses
- voice disturbance

Chronic use of ICS

- Effectively ↓ symptoms & ↑ lung functions
- U bronchial hyperreactivity
- Maximal effect is attained after 9 to 12 month therapy
- Do not affect growth of children

The role of ICS in stable asthma

- The controller medication of choice for management of stable asthma
- All the ICS are equally efficacious when used in equipotent doses
- Most of the clinical benefit from ICS is obtained at low to moderate doses
- ICS should be started at low to moderate dose (depending on the severity of symptoms at presentation) & be used at lowest possible dose required
- High-dose ICS use should preferably be avoided to the risk of SE (both local & systemic)

Oral corticosteroids OCS

 Because of SE, reserved for patients with severe asthma & no adequate response after treatment with: inhalatory steroids or bronchodilators

• **Prednisone** 30 - 60 mg/day orally:

in majority of patients can be terminated in one week

Corticosteroids - i.v.

- Severe cases
- Lifethreatening situations
- Status asthmaticus

Systemic SE Oral & i.v. corticosteroids

- Gluconeogenesis (hyperglycemia)
- Hypertension
- Immunosuppression
- Adrenal suppression
- Osteoporosis
- Growth retardation in children
- Cataract
- Glaucoma
- CUSHING SYNDROME

MCDI MCDI

- Prevention of bronchoconstriction
- Effectively U mast & inflammatory cells
- Effective in children after 4 6 weeks of application

Cromoglycate sodium & nedocromil sodium

- Besides asthma also in allergic rhinitis, conjuctivitis
- SE: cough, taste disturbance, headache

Leukotriene receptor antagonists

- cysteinyl-leukotrien-receptor antagonists
- *montelucast* prevents antigen- & exertion-induced asthma
 - relaxes bronchi in moderate asthma
 - acts additively with β_2 agonists
- 5-lipooxygenase inhibitors:
- *zileuton* ULTC4, LTD4, LTB4 & leukocyte chemotaxine production in bronchial mucosa

The role of LTRA & antimuscarinics In stable asthma

- Monotherapy with LTRA is inferior to monotherapy with ICS
- Monotherapy with LTRA might be an alternative to ICS in patients with mild asthma (if they are unwilling to use ICS or if they are not suitable for ICS therapy)
- As add-on to ICS, LTRA are inferior to LABA
- Addition of LTRA might be beneficial in patients whose asthma remain uncontrolled (despite the ICS/LABA combination)
- *Tiotropium* may be used as add-on therapy if asthma remains uncontrolled (despite moderate-to-high-dose ICS & LABA combination therapy)

Bronchodilating drugs

SYMPATHOMIMETICS the most effective bronchodilators

• METHYLXANTINES

bronchodilators

ANTIMUSCARINIC AGENTS

alternative bronchodilators

• Non-selective:

- adrenaline fast acting bronchodilator after s.c. application (1:1000)
 - maximal bronchodilation in 15 min after application, duration 60-90 min
- SE: tachycardia, arrhythmia, aggravation of angina pectoris

β_2 -selective agonists

- First choice bronchdilators:
- salbutamol, albuterol, terbutaline, fenoterol in inhalatory form
 - effect in 5 min, maximal bronchodilation in 30-60 min, duration
 2 h
 - even with particle size 2 5 μm 50 70% is traped in mouth & pharynx
- *terbutaline, fenoterol* exist also in oral tbl. form
- SE:
- stenocardies
- tremor, insomnia, headache (in higher dose)

Long acting β_2 -selective agonists

• Longer duration (12 h & more)

- *formoterol, salmeterol, clenbuterol, procaterol* for inhalatory or oral application:
- effect begins after the inhalation in 10 minutes
- 🔹 maximum in 2-3 h
- 4 duration of action 12 h
- Highly lipophilic, entry & retention in bronchial smooth muscle, long-lasting effect

The role of LABA in stable asthma

- LABA monotherapy should not be used in the management of stable asthma
- Addition of LABA to ICS is the preferred choice when symptoms are uncontrolled despite ICS monotherapy in moderate doses

Methylxantines

Pharmacodynamics of methylxantines:

- CNS
- cardiovascular effects
- GIT
- kidneys
- smooth muscle
- Theophylline, theobromine, caffeine alcaloids in tea, cocoa & coffee

Use of methylxantines

- Theophylline
- aminophylline salt with 86% of theophylline base
 - microcrystalic form with larger surface \Uparrow dilution & total absorption after oral application

Methylxantines SE

- Blood levels should be monitored
- Therapeutic & toxic effects directly correlate with blood levels
- Amelioration of lung effects 5 20 mg/l
- Anorexia, nausea, vomitting, abdominal problems, headache & anxiety > 20 mg/l
- > 40 mg/l cramps & arrhythmias

Methylxantines PK

- Plasmatic clearance in adults 0.69 ml/kg/min 0,041 l/kg/h
- Changes in hepatal functions (cirrhosis, heart failure, virus hepatitis) U clearance
- Induction of hepatal enzymes (smoking, long-therm therapy with inducers) ↑ clearance, need for about 30% ↑ of dose
- Children = faster clearance of theophylline (1 1.5 ml/kg/min - 0.06 - 0.09 l/kg/h)

Methylxantines Interactions

- Biologic halflife of theophylline:
 - Erythromycin (macrolides), cimetidine, ciprofloxacin, oral contraceptives
 - Phenytoin, carbamazepine, rifampicin, phenobarbital

- Maintain therapeutic levels of *theophylline* 12 to 24 h
- Minor level fluctuation
- Less frequent application
- More effective in night bronchospasm prevention

M-receptor antagonists

- Ipratropium bromide

 short-acting
 bronchodilatant
- In patients with cardiac diseases or thyreotoxicosis, where sympathomimetics are contraindicated
- Minimal SE

- Tiotropium longacting bronchodilatant
- Addition of *tiotropium* compared with:
 - doubling inhaled steroid
 - addition of salmeterol
- Most secondary outcomes favored *tiotropium*

Drugs for the treatment of severe asthma

Anti-IgE therapy (biologic antibody therapy)

- Omalizumab binds IgE in the circulation & prevents it from activating mast cells & basophils
- In moderate & severe asthma it reduces exacerbation rate & steroid dose needed
- It is recommended as an add-on to optimized standard therapy in asthmatics 12 years & older who need continuous or frequent treatment with oral corticosteroids

Anti-IL-13 drugs

- Lebrikizumab anti-IL-13 therapy
- MAb that targets IL-13 (a key effector cytokine in Type 2 airway inflammation in asthma) & is currently in advanced stages of development
- It has the potential to block several downstream signals that play a role in disease progression including:
- > airway inflammation
- > mucous hypersecretion
- > airway remodeling
- the effects are more marked in individuals with high serum periostin levels (they reflect underlying IL-13 activity)

Monoclonal anti-IL-5 MAb

Mepolizumab

- it binds to IL-5 & prevents it from binding to its receptor (specifically to α-subunit) on the surface of eosinophils
- treatment of severe asthma in patients aged 12 years or older & with an eosinophilic phenotype in combination with other antiasthmatics

SE:

 headache, reactions at the site of injection, infections of the urinary & lower respiratory tract eczema & muscle spasms Medications to Treat Asthma Summary of Long-Term Control

- Taken daily over a long period of time
- Used to reduce inflammation, relax airway muscles, & improve symptoms & lung function:
 - Inhaled corticosteroids
 - > Long-acting β_2 -agonists
 - Leukotriene modifiers

Medications to Treat Asthma Summary of Quick-Relief

- Used in acute episodes
- Generally short-acting β₂agonists
 - Ipratropium, tiotropium
 - Oral & i.v. **GC**

Stepwise approach to Asthma Therapy Adults

Basic principles in COPD treatment

- Each pharmacological treatment regimen needs to be:
- > patient-specific
- > guided by severity of symptoms
- > guided by risk of exacerbations
- > drug availability
- patient's response
- None of the existing medications for COPD has been conclusively shown to modify the long-term decline in lung function

Drugs used in COPD treatment

- They copy drug arsenal used in treatment of asthma:
- > bronchodilating drugs (β_2 -mimetics, anticholinergics)
- > methylxantines (theophylline, aminophylline)
- inhalatory corticosteroids (beclomethsone, budesonide, fluticasone)
- > systemic corticosteroids (prednisone, methylprednisolone)
- phosphodiesterase-4 inhibitor (roflumilast)
- It is possible to combine β₂-mimetics with an anticholinergic or corticosteroid

Bronchodilating drugs used in COPD

β ₂ -agonists			
Short-acting	h	Long-acting	h
fenoterol	4 - 6	formoterol	12
salbutamol	4 - 6	indacaterol	24
Anticholinergics			
Short-acting	h	Long-acting	h
ipratropium	6 - 8	aclidinium	12
oxitropium	7 - 9	tiotropium	24

Roflumilast

- Long-acting selective PDE-4 inhibitor
- Anti-inflammatory effects
- Indicated in severe COPD with chronic bronchitis

• SE:

- GI (diarrhea, nausea, abdominal pain, weight loss, loss of appetite)
- neurologic (headache, insomnia, depression)
- infections (sinusitis, rhinitis, uro-infections)

