HISTAMINE & PHARMACOLOGICAL TREATMENT OF ALLERGY

Ladislav Mirossay

P. J. Šafárik University Faculty of Medicine Department of Pharmacology Košice

 an inappropriate response of the body's immune system to normally harmless substances

(pollens, foods, house dust mite, pets, insect poisons, drugs...)

Sensitisation & allergic reaction

Crosslinking of the FccRI via IgE-antigen complexes degranulation

http://en.wikipedia.org/wiki/File:IgE_Fc%CE%B5RI_Receptor_Si gnal_Cascade.jpg http://www.sciencedirect.com/science/article/pii/S000293430800 0685

Allergic reaction Degranulation processes

- 1. antigen
- 2. IgE antibody
- 3. FccRI receptor (highaffinity IgE receptor)
- 4. preformed mediators (early-phase mediators)
- 5. granules
- 6. mast cell
- 7. newly formed mediators (late-phase mediators)

Types of allergy mediators

HISTAMINE

- hydrophilic vasoactive amine
- it is involved in:
- Iocal immune responses
- regulation of physiological function in the gut
- acting as a neurotransmitter
- it also triggers the inflammatory response

- it is derived from the amino acid *histidine* by decarboxylation (L-histidine decarboxylase)
- it is broken down by histamine-N-methyltransferase & diamine oxidase

History of histamine

• Adolf Windaus

Nobel prize in chemistry 1928

- discovered 7-dehydrocholesterol,
 precursor of vitamin D, & he
 showed that it is a steroid
- discovered that it is converted into the vitamin by the action of sunlight
- discovered histamine

1876-1959

Histamine localization & release

- Localization:
- mastocyte & bazophile (granules) bound to heparan sulfate & acidic protein
- Mastocyte & bazophile in various tissues preferentialy in:
- respiratory system
- 🛛 GIT
- 🔺 skin
- Triggering factors for histamine release:
- **UV, allergenes** (IgE) type I.
- 4 drugs: morphine, codeine, tubocurarine
- inflammatory reaction

Histamine receptors Distribution

- H₁-receptors:
- endothelium

smooth muscles

(blood vessels, bronchial system, uterus, GIT)

- H₂-receptors:
- gastric mucosa
- 🛯 heart
- immune system
- H₃-receptors:
- CNS
- H₄-receptors:
- immune cells

Histamine receptors Function H₁ Η, H₂ **Smooth muscle:** Stomach: **CNS**: ↑ HCI secretion • ↓ of • \uparrow tone \rightarrow contraction (bronchi, intestine, uterus) histamine release & **Blood vessels: Blood vessels:** other NTs direct vasodilatation endothelium NO release \rightarrow vasodilatation Heart: endothelial cell slots opening \rightarrow \uparrow vascular pemeability ① contraction force ↑ frequency **Sensitive nerve endings:** arytmogenity itching **CNS**:

î vigilance

Effects of histamine in CVS

- H₁-receptors stimulation :
- vasodilation small arterioles & capillaries
- Icod vessel wall permeability increase
- ₄ 🔱 BP, reflex tachycardia, edema
- Lewis reaction (intradermal histamine injection): → localized red macula (capillary dilation) → spreading of macula (arteriolar dilation axonal reflex) → papular induction (localized edema)

• H₂-receptor stimulation in the heart:

- ↓ ① contractility
- A pacemaker activity

Effect of histamine in smooth muscles & mucose

- Bronchial smooth muscle
- ♣ H₁-receptor stimulation ⇒ bronchoconstriction
- GIT smooth muscle
- ↓ H₁-receptor stimulation ⇒ intestinal contraction;
 diarrhea in higher concentrations

Gastric mucosa

 parietal cell H₂-receptor stimulation ⇒ gastric acid secretion & pepsin activation

Effect of histamine in other tissues

- Uterus
- ↓ H₁-receptor
 stimulation ⇒
 contraction
- Nerve endings
- ↓ H₁-receptor
 stimulation ⇒ irritation
 - ⇒ pain & itching (e.g. urtica in insect injury)

Histamine inhibition

- synthesis inhibition
- glucocorticoids
- release inhibition
- cromoglycate (nedocromil sodium)
- organ level inhibition
 adrenaline

(in anaphylaxis)

- receptor level inhibition
- antihistaminics

Adrenaline Principal rules in anaphylaxis

- Adrenaline is life saving & must be used promptly in anaphylaxis
- Delaying the giving of adrenaline can result in deterioration & death
- using an adrenaline device is the first line treatment for anaphylaxis
- IF IN DOUBT, GIVE ADRENALINE FIRST & then call for help

H₁- ANTAGONISTS I. generation

- Competitive antagonists H₁ receptors
- blood vessel response inhibition including î
 permeability (edema)

!!! DO NOT AFFECT SHOCK SYMPTOMS !!!

- Inhibition of CNS → interactions (can be oposite in children
 stimulation, excitation, clinically as seizures)
- antiemetic & antivertiginous effect (vomiting & vertigo)
- ▲ antimuscarinic effects ↓ mucosal secretion (rhinitis treatment)

First generation H₁- antagonists

Iow specificity

 some effects may be undesirable, others of therapeutic value (anticholinergic – drying of nasal mucosa; sedative effects - insomnia)

H₁- antagonists I. generation Pharmacokinetics

rapid GIT absorption

(effect in 1/2 h)

- liver metabolism
- renal excretion
- newer I. generation drugs – longer t_{1/2} (12-24 h)
- prophylaxis

H₁- antagonists I. generation Indications

- symptomatic therapy of allergies allergic rhinitis (hay), urtica, Quincke edema, drug & food allergies
- adjuvans in anaphylactic reactions therapy
- prophylaxis in desensitisation therapy
- pruritus of different origin allergic & nonallergic dermatoses, pruritus in infective diseases – (scarlatina, measles)
- insect injuries
- kinetoses vertigo, tinnitus, morbus Meniere, migraine
- nausea & vomiting of different ethiology (except organic GIT disturbances)
- insomnia

H₁- antagonists I. generation Side effects

H₁- antagonists I. generation Representatives

Generic name	Trade name	Duration	Sedation	Dose
		(h)		(mg)
diphenhydramine	_	6	±	50
promethazine	PROMETHAZINE	20	+++	10-20
-	PROTHAZINE			
bisulepine	DITHIADEN	7	+	2
dimetinden	FENISTIL	7	+	1-2
clemastine	TAVEGYL	12	±	1
moxastine	THEADRYL	2	+	25
	KINEDRYL			

H₁- ANTAGONISTS II. generation

- minimal sedative effects
- prolonged H₁ antagonist effects

Generic	Trade	Duration	Sedation	Dose
name	name	(h)		(mg)
astemisol	HISMANAL	24	0	10
cetirizine	ZYRTEC	24	0	10
loratadine	CLARITIN	24	0	10
terfenadine	SELDANE	12	0	60

H₁- antagonists II. generation

astemizole & *terfenadine* were found to cause potentially serious arrhythmias (including death, cardiac arrest, torsades de pointes, & other ventricular arrhythmias), When plasma concentrations became elevated subsequent to:

Assessing pro-arrhythmic potential Whole cell patch clamp to assess cardiac AP modulation

- > impaired metabolism or
- drug interaction (macrolides, antifungals)

H₁- ANTAGONISTS III. generation

- they are even an active enantiomer or metabolite of a II. generation drug designed to have:
- ♦ Î efficacy &
- they are devoid of cardiac toxicity

H₁- antagonists III. generation

- minimal sedative effects
- prolonged H₁ antagonist effects
- no cardiovascular side effects

Generic name	Trade name	Duration (h)	Sedation	Dose (mg)
levocetirizine	LEVOCETIRIZINE ACTAVIS	24	0	5
desloratadine	DESLORATADINE ACTAVIS	24	0	5
fexofenadine	FIXIT 120	12	0	120

H₁- antagonists III. generation

• Levocetirizine

- an active enantiomer of *cetirizine* (more effective with fewer advers effects)
- not metabolized & is likely to be safer than other drugs (due to a lack of possible drug interactions)
- it does not cross BBB & does not cause significant drowsiness
- it has been shown to reduce asthma attacks by 70% in children
- can be combined with LT-receptor antagonist

Third generation H₁-receptor antagonists

Deslortadine (Clarinex)

- It is the active metabolite of Lortadine
- •Even though it is thought to be more effective, there is no concrete evidence to prove this

http://en.wikipedia.org/wiki/Image:Desloratadine.png

Fexofenadine (Allegra)

 It was developed as an alternative to Terfenadine

 Fexofenadine was proven to be more effective and safe

http://en.wikipedia.org/wiki/Image:Fexofenadine_Structure.png

H₃ – ANTAGONISTS Pharmacodynamics

Betahistine

- antagonist effects at H_3 receptors $\rightarrow \uparrow$ the levels of neurotransmitters released from the nerve endings (histamine, acetylcholine, norepinephrine, serotonin, & GABA)
- direct agonist effect on H₁ receptors (located on blood vessels in the inner ear) → dilates the blood vessels (within the inner ear) → can relieve pressure from excess fluid & act on the smooth muscle

Betahistine Indications

- it is used to:
- balance disorders or
- to alleviate symptoms associated with Ménière's disease (defective absorption in endolymphatic sac,...):
- vertigo
- tinnitus
- the loss of hearing
- nausea & vomiting, reactions to food
- mental disorientation
- mood swings
- photosensitivity
- extreme fatigue
- cold sweath, palpitations...

Antiemetics Antiserotonic drugs

Ladislav Mirossay

P. J. Šafárik University Faculty of Medicine Department of Pharmacology Košice

Nausea: Simona D'Auria 2005-2006

Nausea & vomiting

- nerve ending stimulation stomach & duodenum
- vagus nerve stimulation in pharynx
- drugs (antineoplastics), endogenous emetogenic substances (radiation damage), infections
- visceral senzory nerves stimuly (testes or uterus damage)
- emotional & psychological factors, odours
- endocrine factors (pregnancy) ⇒ increased estrogene concentration in chemoreceptive zone
- migraine

Neurotransmiters involved in nausea & vomiting

Gastroprokinetic

agents

- acetylcholine
- norepinephrine
- dopamine
- serotonin
- histamine
- glutamate
- GABA
- ATP
- substance P
- endorphines

lookfordiagnosis.com

Sites of action of drugs
Antiemetic drugs Based on receptor antagonism

H ₁	Μ ₁ , Μ ₃	D ₂	5-HT ₃	NK1
promethazine	scopolamine	phenothiazines metoclopramide domperidone	setrons	aprepitant fosaprepitant

drugs which assist to suppress emesis
 successful therapy involves blocking one or more receptors for neurotransmitters involved in emesis regulation

Antiemetic Therapeutic Sites - Summary

H₁- receptor antagonists as antiemetics

- promethazine, diphenhydramine – Meniere's disease
- diphenhydramine, moxastine – kinetosis
- prevention
- maximal antiemetic
 effect 4 h after
 application (duration 24 h)

M₁ - receptor antagonists as antiemetics

- scopolamine
- antagonist of M₁-receptors in cortex & pons
- antagonist of H₁-receptors in hypothalamus & vomiting center
- Suppresses also NA-system (improved adaptation to vestibular stimulation)
- transdermal application (patch)

- kinetosis, postoperative nausea & vomiting (PONV)

D - receptor antagonists as antiemetics

• phenothiazines (chlorpromazine, prochlorperazine)

thiethylperazine – only as antiemetic

(in chemoreceptive zone)

- nausea & vomiting also in:
- > uremia
- radiation
- kinetosis
- > acute viral gastroenteritis
- > PONV
- > antineoplastic chemotherapy
- hyperemesis gravidarum
 (tiethylperazine)

Metoclopramide Mechanism of action

↓ gastric smooth muscle relaxation produced by *dopamine* → therefore
 ↑ cholinergic response of the GI smooth muscle

 it accelerates
 intestinal transit & gastric emptying

(by preventing relaxation of gastric body & increasing the phasic activity of antrum)

 this is accompanied by relaxation of the upper small intestine (resulting in an improved coordination between the body & antrum of the stomach & the upper small intestine)

Metoclopramide Additional actions

- it also ↓ reflux into the esophagus
 (by ↑ the resting pressure of the lower esophageal sphincter)
- dopamine antagonist action raises the threshold of activity in the chemoreceptor trigger zone &
 the input from afferent visceral nerves

Metoclopramide Indications

Adults:

- short time (max. 5 days): prevention & therapy of nausea & vomitting
- migraine
- 🛯 uremia
- radiation
- chemotherapy
- acute viral gastroenteritis

Children:

- therapy of postoperative nausea & vomitting (i.v. only)
- prevention of delayed nausea & vomitting after chemotherapy (oral or i.v.)

- short-time treatment in recommended doses & intervals to minimize neurologic, cardiovascular & other side effects
- i.v. bolus slow (3 min) –same reasons
- contraidicated in children up to 1 year risk of:
- > neurologic reactions
- > methemoglobinemia

Metoclopramide Side effects

• neurologic:

- extrapyramidal symptoms
- irreversible tardive diskinesia

• 1 risk:

- high doses
- Iong-term therapy
- > children

- cardiovascular:
- > hypotension
- hypertension
- tachycardia

• 1 risk:

- ≻ i.v.
- > elderly patients
- > arrhythmias

Domperidone Indications

- in patients with Parkinson's disease prevention of vomiting in *apomorphine* treatment (unlike *metoclopramide*, it does not cross the BBB)
- gastroparesis (delayed gastric emptying)
- paediatric gastroaesophageal reflux

Do not confound with

5-HT₃ receptors in vomiting

- 5-HT is released by the enterochromaffin cells of the small intestine in response to chemotherapeutic agents
- 5-HT₃ receptors are present in several critical sites involved in emesis (vagal afferents, the solitary tract nucleus, the area postrema)

- the highest concentration of 5-HT₃ receptors in the CNS \Rightarrow
- > solitary tract nucleus &
- chemoreceptor trigger zone
- 5-HT₃ antagonists may also suppress vomiting & nausea by acting at these sites

5-HT₃- receptor antagonists Setrons

- ondansetron, granisetron, tropisetron, palonosetron
- ▲ nausea & vomiting ⇒ chemotherapy
- they may be given alone or with a:
- > glucocorticoid (dexamethasone)
- NK₁ receptor antagonist (aprepitant)
- the most common side effects: constipation or diarrhea, headache, dizziness

Neurokinin type 1 (NK1) receptors antagonist

aprepitant

- blocks substance P from binding to NK 1receptor
- broader spectrum & activity in delayed emesis
- augments the antiemetic activity of 5-HT₃
 receptor antagonists & dexamethasone
- inhibits both acute & delayed chemotherapyinduced vomiting
- good safety profile, high cost of the drug

Corticosteroids

Corticosteroids have antiemetic properties

Mechanism of action:

 possibly by suppressing peritumoral inflammation & prostaglandin production

Use:

 to enhance efficacy of 5-HT₃-receptor antagonists in the treatment of chemotherapy-induced vomiting

Benzodiazepines

Use:

 benzodiazepines such as diazepam are used prior to the initiation of chemotherapy to reduce anticipatory vomiting or vomiting caused by anxiety

I CAN'T KEEP CALM BECAUSE I HAVE ANXIETY

SEROTONIN (5-hydroxytryptamine, 5-HT)

- synthesized from tryptophan
- rapidly metabolised
- Iocalization:
- 🛛 GIT
- thrombocytes
- bronchial system
- INS

History of serotonin 5-HT

- Dr. Erspamer first detected serotonin in the GIT in the 1930's, and called it "enteramine,,
- it was isolated in 1948, when *Drs. Page, Green,* & *Rapport* called it *"serotonin",* identifying it as an agent that affected blood vessels
- it was identified in the brain in the 1950's
- serotonin system is widespread throughout the body
- it has far more implications than just effects of vasculature
- "serotonin" was the name that stuck, pharmacologists prefer 5-hydroxytryptamine

Irvine Page, M.D. (left)

Dr. Arta Green, team member, in front of machine used to isolate serotonin

Effects of 5-HT in CNS

- sleep influence
- thermoregulation
- mood
- aging
- anxiety
- circadian rhythms
- eating disorders
- bowel problems
- migraine
- nausea
- premature ejaculation
- pain
- drug abuse
- vasodilation/vasoconstriction (BP)
- memory

...& the list goes on

Serotonin Neurotransmission

• CVS

vasoconstriction – lungs, kidneys

(direct effect in vessel wall)

vasodilation - skeletal muscle, heart

(NO-mediated)

- GIT
- smooth muscle tone motility stimulation
- Bronchi
- smooth muscle tone constriction

Migraine Mechanisms & symptoms

- inherited, episodic disorder involving sensory sensitivity
- patients complain of discomfort from normal lights & the unpleasantness of routine sounds

Migraine treatment

5-HT AGONISTS

Proposed Mechanisms for Triptan Effect on Migraine

Triptans

- sumatriptan
- 5-HT_{1D} receptor agonist
- migrainetherapy
- ergotamine
 replacement

• side effects

Туре	Common	
CVS	palpitations, syncope, changes in BP	
ENT	sinusitis, tinnitus; allergic rhinitis; upper respiratory inflammation; ENT hemorrhage	
Neurological	phonophobia & photophobia	
Endocrine	thirst	
Muscular	myalgia	
Urogenital	dysmenorrhea, \Uparrow urination, intermenstrual	
	bleeding	
Eye	mydriasis, blindness & low vision, visual disturbances, eye edema & swelling, eye irritation & itching, accommodation disorders, external ocular muscle disorders	

5-HT ANTAGONISTS

- cyproheptadine
- 4 5-HT-, H-, M- antagonist
- allergy therapy (insects, food, drugs)
- a migraine prophylaxis
- ↓ ↓ GIT motility

• ketanserine

- $_{f 4}$ \Downarrow in thrombocyte aggregation
- **₄** α-receptor inhibition (BP ↓)
- amelioration of rheology ulcus cruris & decubitus therapy

5-HT ANTAGONISTS

• ondansetron, granisetron, tropisetron

(antagonists of 5-HT₃-receptor subtype)

- **important antiemetics** (chemotherapy, radiotherapy)
- pizotifen, pipetiaden
- migraine prophylaxis
- sedation
- î appetite

Vomiting girl

OKSENDAV TÜDRUK 1997