CORTICOSTEROIDS

Ladislav Mirossay

P. J. Šafárik UniversityFaculty of MedicineDepartment of PharmacologyKošice

CORTICOSTEROIDS

- Synthesised in adrenal cortex
- Influence mainly metabolism of glycids & proteins
- Regulate salt (water) excretion

Corticosteroids Synthesis

History of corticosteroids

- Tadeusz Reichstein (1897-1996)
- Philip Showalter Hench
 (1896 1965)
- Edward Calvin Kendall (1886-1972)
- Nobel Prize for Physiology
 & Medicine in 1950

(for their work on hormones of the adrenal cortex & the isolation of *cortisone*)

Glucocorticoids - GC Cellular delivery

- Protein bound 90% of GC (to Corticosteroid Binding Globulin - CBG):
- receptors for CBG-steroid complex (on cell surface)
- > CBG "delivers drug to the cells"
- binding restricts volume of distribution
- active transport of bound steroid into cell

©1999 Addison Wesley Longman, Inc.

GC Genomic effects – GRE-mediated

- Binding of GC to human GC receptor (GR) in cytoplasm (complex dissociation)
- Active transport of dimer (to nucleus)
- Binding of dimer to regulated gene sequences - GRE (cell type determines which sequences)
- A variety of proteins may be produced (depending on specific genes activated)
- \uparrow or \Downarrow in DNA transcription

Source: Trevor AJ, Katzung BG, Kruidering-Hall M, Masters SB: Katzung & Trevor's Pharmacology: Examination & Board Review, 10th Edition: www.accesspharmacy.com

Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

GC

Genomic effects – GRE-independent

 The ligand-activated GR can also modulate gene expression independently of binding to GREs directly interacting with other transcription factors (TF), such as:

Examples of GRE-independent effects

- Suppression of transactivation of other TF through protein-protein interactions may be particularly important in suppression of:
- > immune function &
- > inflammation by GC
- Most of the effects of GC on the immune system may be mediated by the interaction between:
- > GR & NF-κB,
- GR & AP-1
- > GR & STATs

GC Nongenomic effects

- Further to genomic actions, GC also signal within seconds or minutes
- These effects are termed as "nongenomic" (since they do not require GR transcriptional activity)
- Most of the nongenomic GC actions are triggered by membrane-bound GR (mGR), which induces the activity of kinase signaling pathways, e. g.:
- the mitogen-activated protein kinase (MAPK)
- ► the phosphatidylinositol 3-kinase (PI₃K)

Examples of nongenomic effects

- Some representative examples of nongenomic actions are:
- > the immediate suppression of ACTH release from the anterior lobe of pituitary by GC
- the 1 frequency of excitatory post-synaptic potentials in the hippocampus
- > the cardioprotective role of GC through NO-mediated vasorelaxation in patients with MI or stroke
- some immunomodulatory GC effects via disruption of T-cell receptor signaling

GC Mitochondrial effects

- In addition to genomic & nongenomic actions, GC exert some effects through mitochondrial GR (granted that many regulatory sites of the mitochondrial genome have functional GREs)
- ligand-activated GR translocates from the cytoplasm to mitochondrion & influences substantially mitochondrial gene expression

Examples of mitochondrial effects

- Many mitochondrial RNA-processing enzymes or TF are expressed under the control of nuclear GR (suggesting a dynamic interrelation between glucocorticoids, mitochondria and the nucleus)
- Importantly, the mitochondrial GR has been early recognized as a potent therapeutic target, because of its involvement in the programmed cell death (apoptosis) of malignant cells
- Indeed, synthetic GC are the cornerstone of several therapeutic protocols of hematologic malignancies

- Strength of binding (steroid to CBG, steroid to receptor, steroidreceptor to DNA) determines potency & duration
 (PK of circulating GC have little effect on potency or duration):
- potency is primarily determined by the GC base
 (the ester may control the amount of drug released into the circulatory system which would also influence the magnitude of effect)
- duration is controlled by the base UNLESS the base is attached to an ester that makes it "long-acting,"
 (even then, the base will have some effect e.g. *dexamethasone acetate* injection will have a longer duration of effect than *prednisolone acetate*)

- Ultimate activity of GC depends on the nature & quantity of the proteins produced:
- PK of the new protein (amount produced & half-life) ultimately determines the potency & duration of the response
- proteins may interact with each other & with DNA to alter binding

GC PK

- Very good GIT resorption
- Oral; i. v.; i. m.; local application
- Metabolised in liver (cortisol 70%)
- There, cortisol is reduced, oxidized, or hydroxylated, & the products of these reactions are made water soluble by conjugation with sulfate or glucuronic acid to facilitate their excretion in urine
- Cortisol is inactivated mainly by reduction (reduction reactions can also result in "regeneration" of *cortisol* from its inactive metabolite, *cortisone*)
- Metabolic activation of:
- > prednisone, methylprednisone ⇒ prednisolone, methylprednisolone
- Synthetic corticoid elimination ⇒ strictly renal

GC products Esters & dosage forms

Selection of a GC ester is based on the route of administration & the desired duration & potency of effect:

- Oral
- > the ester is irrelevant
- > all are separated from the base in the GIT
- > the base drugs are well absorbed

GC products Injection forms

- IM, SC, Intralesional
- rapidly absorbed products can be used as substitutes for oral preparations (their absorption & duration are roughly equivalent to the oral base products & salts)
- slowly absorbed (Depot) products are designed to provide either low concentrations of GC for extended periods of time or high concentrations in a local area (e.g. tumor or joint injections...)
- IV
- water soluble salts reach sites of action 1/2 1 hour faster than oral but are otherwise similar in potency
- this is the most appropriate route of administration for "EXTREME-DOSE" GC therapy (e.g. CNS trauma, shock, etc.)

GC Substances

- Short-acting:
- cortisone
- > hydrocortisone
- Intermediate-acting:
- > methylprednisolone
- prednisone
- triamcinolone
- Long-acting:
- betamethasone
- dexamethasone

- Cortisone is a precursor that could be converted to cortisol
- **Cortisol** (hydrocortisone) is the active form
- ...many others

CNS	Euphoria & behavioral changes Maintenance of alpha rhythm Lower seizure threshold
GIT	 ↓ Ca²⁺ & iron absorption Facilitation of fat absorption ↑ acid, pepsin & trypsin Structural alteration of mucin
Skeletal muscle	Weakness (excess & deficiency) Muscle atrophy (chronic excess) ↓ glucose uptake & utilization
Skin	Atrophy & thinning (chronic excess) Calcinosis cutis
Hematopoietic system	Involution of lymphoid tissue ↓ in peripheral lymphocytes, monocytes, eosinophils ↑ in peripheral neutrophils, platelets, RBCs ↓ clotting time ↓ phagocyte competence
Fat	↓ glucose uptake & utilization

CVS	Positive inotropic effect ① BP (① blood volume)
Kidney	 ↑ reabsorption of water, Na+, Cl⁻ ↑ excretion of K+, Ca²⁺ ↑ extracellular fluid
Bone	↓ of collagen synthesis by fibroblasts Acceleration of bone resorption Antagonism of vitamin D
Liver	1 glykogenolysis & glukoneogenesis
Reproductive system	Teratogenesis during early pregnancy
Cells	"Stabilization" of liposomal membranes \downarrow of macrophage response to migration inhibition factor Lymphocyte sensitization blocked Cellular response to inflammatory mediators blocked \downarrow of fibroblast proliferation

GC main clinically useful effects Inflammation, immunity, allergy

GC

Anti-inflammatory & anti-immunity therapy

- GC potently interrupt events triggered at the cell membrane (PLC, etc.):
- > \Downarrow of inflammatory & immunity mediator synthesis (e.g. PG, LT)
- GC potently U cell mediated immunity (antigen recognition, cell migration, etc.):
- > \Downarrow of immune cell proliferation & function (e.g. phagocytosis)

GC are NOT effective inhibitors of antibody synthesis

GC

Antiinflammatory & immunosuppressive effects

Medscape® www.medscape.com

Figure 2. Anti-Inflammatory and immunosuppressive effects of corticosteroids.

Antiinflammatory effects of GC Cells & tissues

Effect on eosinofils

- ↓ gene transcription for adhesive factors & cytokines
- ↓ circulatory eosinophils
- ↓ production in bone marrow
- ↓ accumulation of eosinophils

Lymphocytes & macrophages

- ↓ lymphocyte & macrophage proliferation & activity
- \downarrow T-helper effects; \downarrow T-cell proliferation

Reduction of mucosal edema

• \uparrow synthesis & sensitivity of β -adrenergic receptors

Antiinflammatory effects of GC Mediators

Effect on inflammatory mediators

- \downarrow production of eikosanoids; \downarrow PLA2, \downarrow COX expression
- \downarrow IL production (1,2,3,4,5,6,8), TNF α
- ↓ complement concentration in plasma
- ↓ NO production
- ↓ histamine release

GC

Immune system regulation

GC reduce inflammation

Dosing

- Approximately 4x replacement dose
- Usually 1 mg/kg prednisone or prednisolone
- Various "protocols" lead to success

Discontinuing therapy

- Abrupt discontinuation possible if GC therapy < 2 weeks duration:
- taper off if GC therapy > 2 weeks duration
- rate of taper should be proportional to duration of prior therapy (the longer the original therapy, the slower the rate of dose reduction)

GC inhibit immunologic responses

Dosing

- Approximately 16x replacement dose (daily)
- Usually initiate with 4 mg/kg prednisone or prednisolone daily in 2 doses (2 mg/kg q12 h)
 - avoids relatively remote potential for acute adverse effects
 - possibly reduces initial efficacy (vs one single daily dose)
 - acute "psychosis" POSSIBLE with these doses (especially in one 4 mg/kg daily dose)

Reducing dose rates

- Goal to "acheive the lowest dose that will control the disease"
- Disease break may require returning to original remission doses (or higher)

Dosing examples of GC

Dosage & schedule

Low dosage for replacement therapy

Addison's disease, anteriorhypopituitarism, post subtotal bilateral adrenalectomy cortisone 12.5~25 mg/d, or hydrocortisone 10~20 mg/d.

Universal dosage for long term therapy

inflammations, rheumatoid arthritis, lymphoma, lymphoblastic leukemia

Started with prednisone $10 \sim 20 \text{ mg}$, 3/d; gradually decreased to the maintenance dose after obtained the initial effect.

High dosage for implosive therapy

Serious infections: hydrocortisone i.v.d. 200-300 mg, ≥1 g/d. Shocks: hydrocortisone v.d. 1 g, 4-6 g/d. Alternate day therapy Anti-inflammatory or anti-immunologic

- Administration of a single dose of an intermediateacting GC on alternate days (in a dose equivalent to that being employed over a 48 h period):
- > any patient who is dosed with GC for longer than 14 days
- greater risk of disease "breakthrough,"
- greater reduction in side effects than can be acheived by dose reduction alone (does NOT eliminate side effects, merely minimizes them)
- useful for prednisone, prednisolone, methylprednisolone (inappropriate for dexamethasone, betamethasone)

Shock:

- *Methylprednisolone* sodium succinate
- Dexamethasone Na phosphate

Spinal cord trauma:

• *Methylprednisolone* sodium succinate

Glucocorticoids - Indications

- As hormone replacement therapy in deficiency syndromes like Addisonian states (physiological replacement doses)
- For HPA axis suppression, in Congenital Adrenal Hyperplasia (physiological doses are sufficient)
- Anti Inflammatory activity / Immunosuppressive action (5- 20 times of physiological doses)

Common therapeutic uses of glucocorticoids

Respiratory disease

- Asthma,COPD,sarcoidosis,hayfever,prevention and treatment of ARDS.
- Cardiac disease
- Post-myocardial infarction syndrome
- Renal
- Some nephrotic syndromes, some glomerulonephritides
- GI disease
- Ulcerative colitis
- Crohn's disease
- Autoimmune hepatitis

- Rheumatological disease
- SLE,polymyalgia rheumatica, cranial arteritis,juvenile idiopathic arthritis, vasculitides,rheumatoid arthritis
- Neurological disease
- Cerebral oedema
- Skin disease
- Pemphigus,eczema
- Tumours
- Hodgkin's lymphoma, other lymphomas
- Transplantation
- Immunosuppression

 THE MOST COMMON INDICATION FOR STEROID USE IS AS AN ANTI-INFLAMMATORY DRUG

Adverse effects

- Occur with prolonged use of high doses
- Cushing's disease

Psychiatric -

- Sleep disturbance/activation
- Mood disturbance
- Psychosis

Skin/soft tissue

- Cushingoid appearance
- Abdominal striae
- Acne
- •Hirsutism
- •Oedema

Neurologic

Neuropathy
 Pseudomotor cerebri

Cardiovascular •Hypertension

MSK

- Osteoporosis
- Asceptic necrosis of bone
 Myopathy

Endocrine

- Diabetes mellitus
- Adrenal cortex suppression

Immunologic

- Lymphocytopenia
- Immunosuppression
- •False-negative skin test

Opthalmic

•Cataract •Narrow-angle glaucoma

Developmental •Growth retardation

GC-induced glaucoma

- Steroid administration alters trabecular meshwork cell morphology by different mechanisms resulting in:
- reduction in facility of aqueous outflow
- intraocular pression elevation

- ① infective diseases susceptibility
- Spreading infection in inadequate use
- Wound healing prolongation
- Petic ulcer induction
- Because of hypothalamo-hypophyseal-suprarenal axis supression (starts after 2 weeks of use)

sudden therapy termination should be fatal

(taper regimen for discontinuation > 2 weeks)

GC Therapeutic principles

- Define relative contraindications
- Eliminate infection
- Choose optimal cortisonoid
- Apply the lowest effective dose possible
- Treat the shortest time possible
- \Downarrow progressively the dose as soon as possible
- Never suddenly terminate the therapy
- Check body weight, BP, glycosuria & kaliemia
- Protein diet with sufficient calcium intake
- ↓ NaCI intake
- In high steroid doses add KCI

- All GC act by the same basic mechanism
- Cells control the specific response by controlling specific DNA sequences or protein interactions (anti-inflammatory & anti-immunologic activity cannot be separated from metabolic SE)
- Differences between GC are potency, duration of action of the base & PK behavior of the salts
- The salt (form) of a GC does not affect the duration of action (if the drug is given orally)
- Inj. replacements for oral GC (given daily or on alternate days) include bases for injection
- Alternate day therapy limits the toxicity of GC (metabolic & adrenal axis) while efficacy is maintained

GC antagonist

- Mifepristone:
- > GC &
- progesterone receptor antagonist
- Indication:
- medical abortion in combination with *misoprostol*

- SE:
 - vaginal bleeding
 - abdominal pain
 - GI upset
 - > diarrhea
 - headache

Mineralocorticoids Pharmacologic effect

ALDOSTERONE

- Physiologic regulation is influenced by 3 principal factors:
- > ACTH
- renin-angiotensin system
- > plasma K⁺ concentrations
- ↓ BP or volume of extracellular fluid ⇒ ↑ renin release in kidneys ⇒ which by means of angiotensin II induces aldosterone secretion ⇒ ↑ Na⁺ & water retention & by feedback reaction ↓ renin release

Aldosterone MOA

- Acts on the nuclear mineralocorticoid receptors
- The principal cells the distal tubule & the collecting duct of the kidney nephron
- It upregulates & activates the basolateral Na⁺/K⁺ pumps, which:
- > pumps 3 Na⁺ ions out of the cell (into the interstitial fluid)
- > 2 K⁺ ions into the cell from the interstitial fluid
- This creates a concentration gradient which results in:
- reabsorption of Na⁺ ions & water into the blood &
- secreting K⁺ ions into the urine (lumen of collecting duct)

Aldosterone Action

f) production of aldosterone could be:

- primary (adrenal adenoma or hyperplasia)
- secondary (due to malignant hypertension, renal artery constriction, pregnancy, liver cirrhosis, nephrotic edema, congestive heart disease)
- Antagonist spironolactone

Spironolactone Pharmacology & SE

- Blocks aldosterone receptors in kidneys
- Prevents Na⁺ reabsorption in the distal tubules
- Potassium-sparing diuretic agent

- Anti-androgen SE (gynecomastia)
- Hyperkalemia (in combination with ACE inhibitors)

Mineralocorticoids & steroid synthesis inhibitors Therapeutic overview

- Hypoaldosteronism (Addison's disease)
- Fludrocortisone replacement therapy

- Adrenal hyperfunction
- > metyrapone, ketoconazol

Metyrapone Effect & clinical use

- Metyrapone blocks cortisol
 synthesis by reversibly ↓ steroid
 11β-hydroxylase
- Can be used in:
- > diagnosis of adrenal insufficiency
- > occasionally in the treatment of Cushing's syndrome

Ketoconazole Effect & clinical use

- Imidazole antifungal drug by blocking the synthesis of ergosterol in fungi (plant sterol)
- In humans it U the conversion of cholesterol to steroid hormones (cortisol & testosterone)

Indications:

- suppression of GC synthesis in the treatment of Cushing's syndrome
- second-line treatment for certain forms of advanced prostate cancer

