COMA & INTENSIVE CARE

Jozef Firment, MD. PhD., Judita Capkova, MD. PhD.

Department of Anaesthesiology & Intensive Care Medicine Šafárik University Faculty of Medicine, Košice

DEFINITION

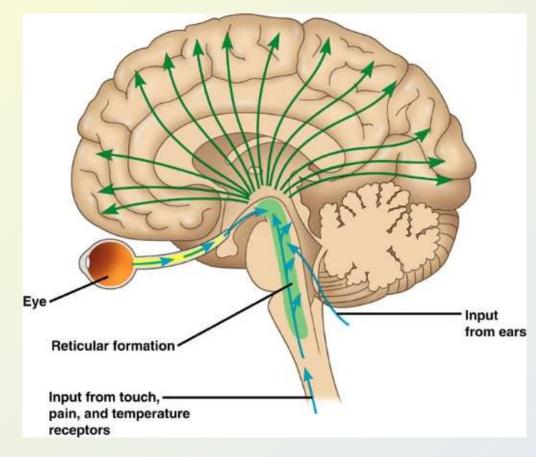
Victim is unresponsive to verbal stimuli

Quantitative:

- GCS <8 points
- Somnolence stupor coma

Qualitative:

Vigilant coma (coma depassé, apalic sy)


COMA - PATIENT EXAMINATION

- 1. Causalities history
- 2. Clinical examinations
- Patient responded to requests, contacts, painful stimuli.
- Performance: Injuries, foetor, convulsions, body position, ocular signs, head stiffness, lateralisation, fever, breathing, signs of organ failure... BP, P
- 3. SpO₂
- 4. Laboratory tests: Glycaemia, K, Na, Hb, ABG, BUN, creatinine, AST, ALT, osmolality, toxicology
- 5. Brain CT...

Activatory system of Reticular formation (RF)

 Transmission of several sensoric inputs

Facilitating of vigilance

GLASGOW COMA SCALE

GLASGOW COMA SCALE	Sc	ORE
Eye opening (E)	Spontaneous	4
	To voice	3
	To pain	2
	None	1
Verbal response (V)	Oriented	5
	Confused	4
	Inappropriate words	3
	Incomprehensible sounds	2
	None	1
Best motor response (M)	Follows commands	6
in the upper limbs	Localises pain	5
	Withdraws from pain	4
	Abnormal flexion	3
	Abnormal extension	2
	None	1

(E+M+V)
Score 3-8 points = severe head injury.
Score 9-12 points = moderate head injury.
Score 13-15 points = mild head injury.

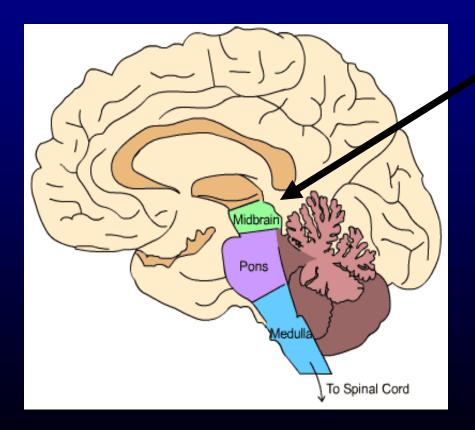
Coma without focal (lateralizing) neurological signs

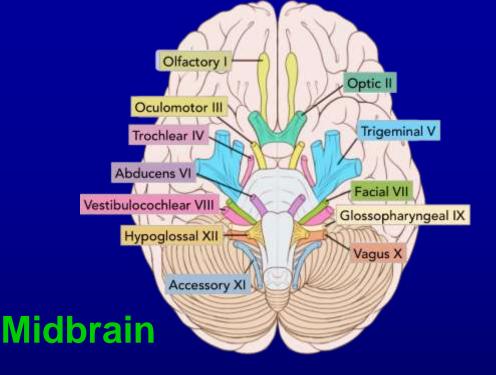
- Anoxia / hypoperfusion
- Metabolic: e.g. Hypo/-hyperglycaemia, acidosis/alkalosis, hepatic or renal failure
- Intoxications: e.g. alcohol, opioids, benzodiazepines,...
- Endocrine : hypothyreoidism
- Hypo- or hyperthermia
- Epilepsy
- Hypertensive encephalopathy...

Coma with focal (lateralizing) neurological signs

(due to brainstem or cerebral dysfunction)

- Vascular: cerebral haemorrhage or infarction.
- Supra or infratentorial space-occupying lesion: tumour, haematoma, abscess

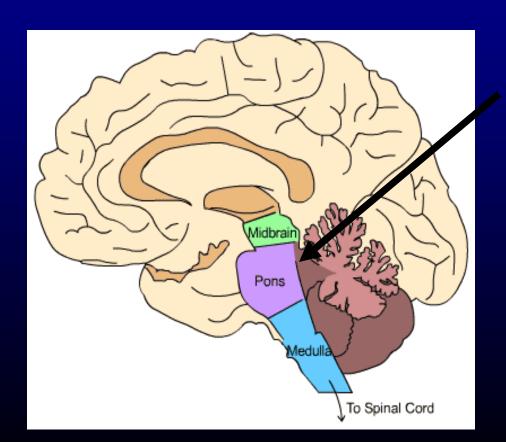

Coma with meningism

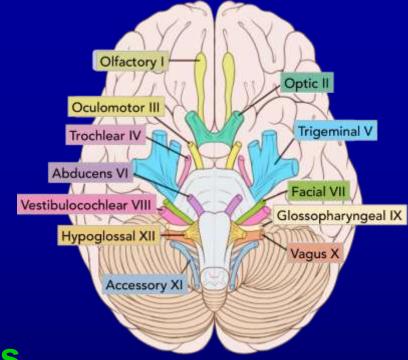

- Meningitis, encephalitis
- Subarachnoid haemorrhage

Test brainstem dysfunction

- Pupillary response
- Corneal reflex
- Spontaneous eye movements
- Oculocephalic response/Doll's head manoeuvre
- Oculovestibular response
- Swallowing
- Respiratory pattern

Brain Stem

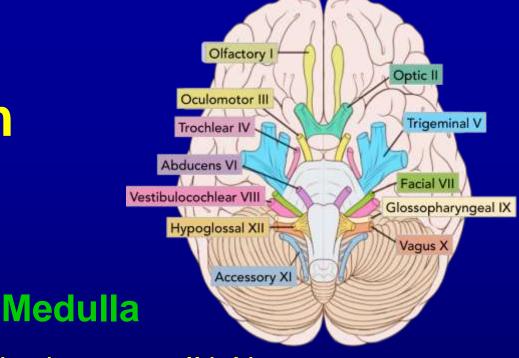


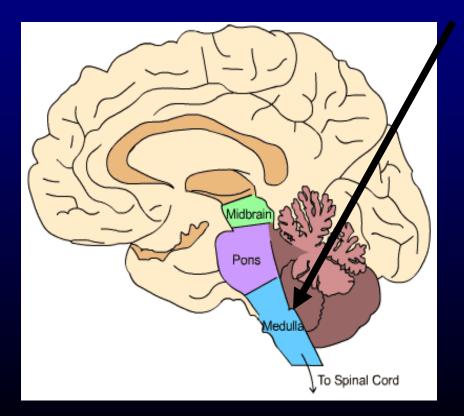


III brain nerve

- pupils
- eye movement

Brain Stem




Pons

brain nerves IV, V, VI

- conjugate movement of eyeballs
- corneal r.

Brain Stem

brain nerves IX, X

- Gag reflex
- Tracheal rr. (cough)

Respiratory centre!

Plan for further investigations:

- 1. Brainstem function intact: urgent CT head scan:
 - lesions (subdural haematoma,..),
 - normal lumbar puncture, CSF analysis

2. Brainstem function not intact:

- if **herniation syndrome** appears to be progressing **rapidly** mannitol, HS, hyperventilation, surgeon
- if **herniation syndrome** appears to be progressing not so **rapidly** mannitol, HS and CT

3. Consider giving thiamine, glucose (40 ml 40% glucose), naloxon, flumazenil

4. Examine patient:

- Core temperature, heart rate, rhythm, BP, respiratory pattern, breath, skin, heart, abdomen,
- Is there meningism?
- Asses GCS
- Look for evidence of brainstem dysfunction
- Are there lateralizing signs?

Head injury (HI)

- Primary brain injury: the neurones lost at the time of HI are lost forever (direct result of trauma)
- Causes of secondary brain injury:

Systemic:

- Hypoxaemia
- Hypotension
- Hypercarbia
- Severe hypocapnia
- Pyrexia...

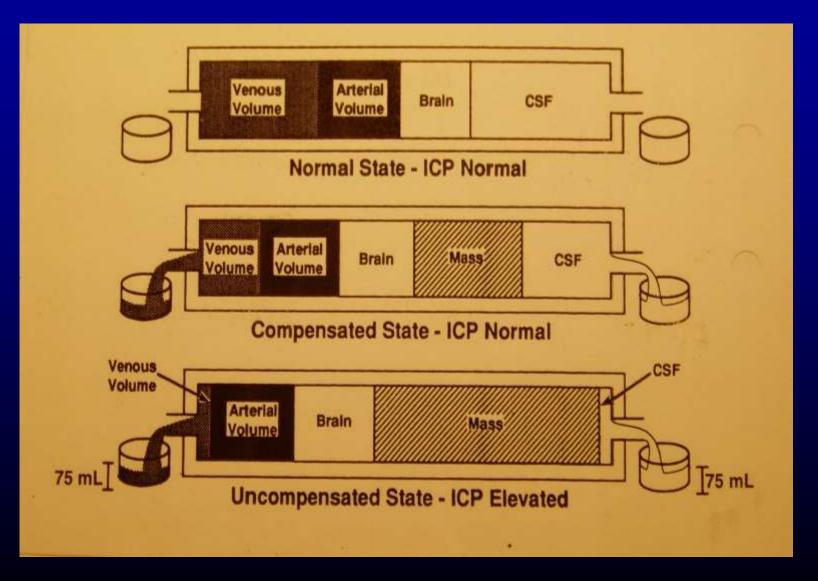
Intracranial:

- Haematoma (extradural, subdural, intracerebral)
- Brain swelling / oedema
- Raised ICP...

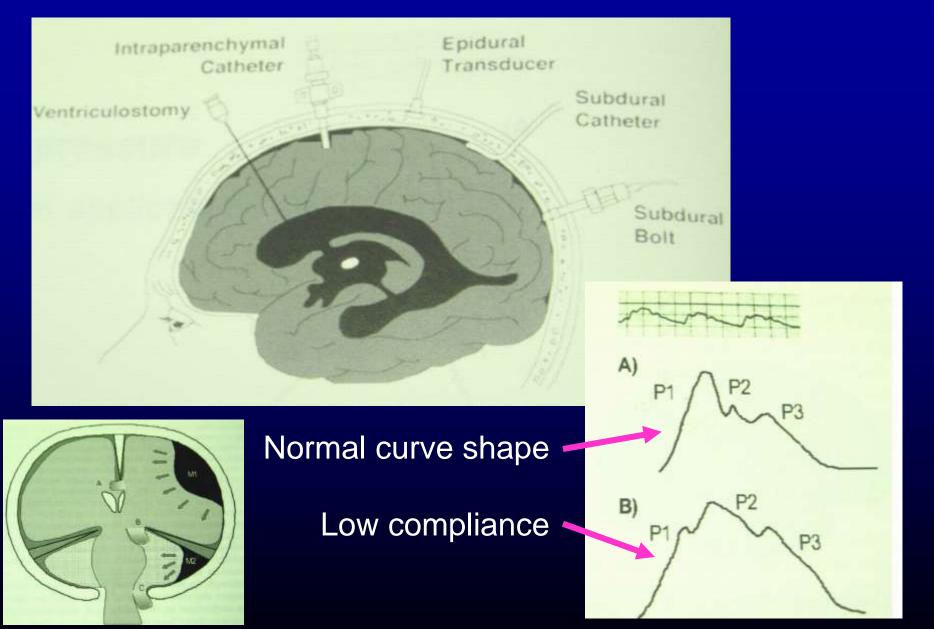
Prevention of secondary injury is the aim of the treatment!

FIRST AID IN COMA

- ABC CPR
- Recovery (lateral) position


CEREBRAL OEDEMA

- Signifies an increase in the brain water content.
 There are three different types of cerebral oedema vasogenic, cytotoxic, and interstitial (CBF).
- Increased cerebral blood volume (congestion).

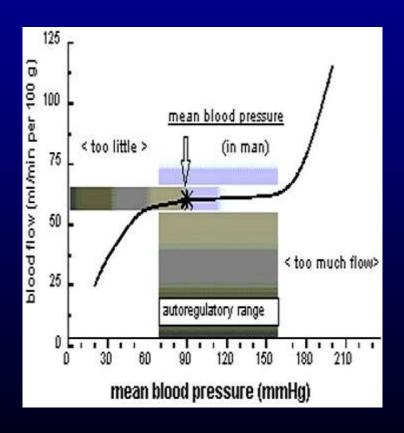

Vasogenic	Cytotoxic	Interstitial
BBB defect due to parenchymal necrosis	Toxic cell defects	Increased intraventricular pressure
Increased	Unchanged	Unchanged
Protein-rich	None	Low protein content
Enlarged extracellular space in the white matter	Cellswelling	Enlarged extracellular space in the periventricular matter
BBB = Blood Brain Barrier		
	BBB defect due to parenchymal necrosis Increased Protein-rich Enlarged extracellular space in the white matter	BBB defect due to Toxic cell defects parenchymal necrosis Increased Unchanged Protein-rich None Enlarged extracellular space Cell swelling in the white matter

Patients with head injuries usually have a mixed type of oedema: vasogenic and cytotoxic.

INTRACRANIAL COMPENSATION FOR EXPANDING MASS

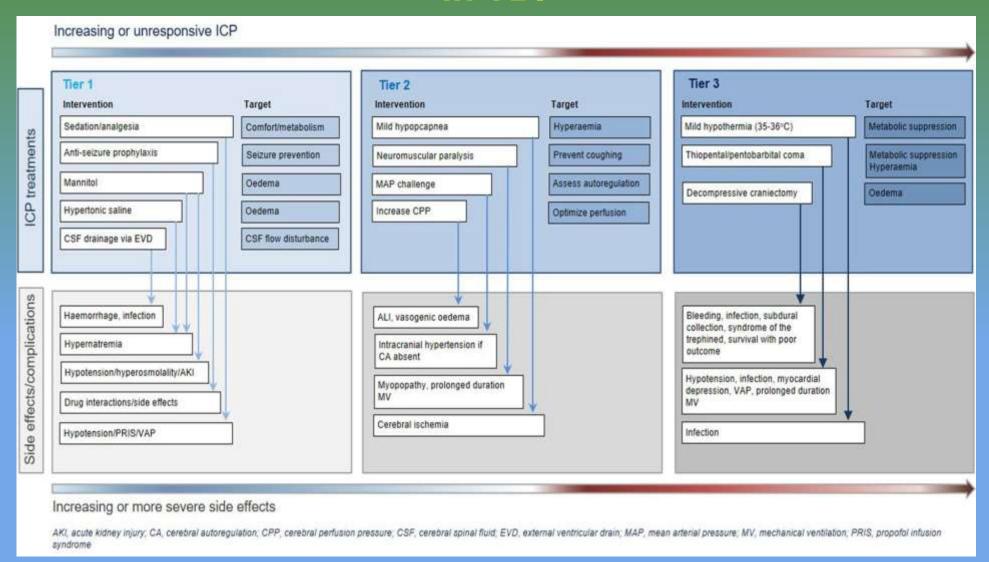
INTRACRANIAL PRESSURE

Early indications for head CT in adults TBI


- 1. GCS < 13 on initial assessment in the emergency department
- 2. GCS < 15, 2 h after the injury on assessment in the emergency department
- 3. Suspected open or depressed skull fracture
- 4. Any sign of **basal skull fracture** (haemotympanum, 'panda' eyes, cerebrospinal fluid leakage from the ear or nose, Battle's sign)
- 5. Post-traumatic **seizure**
- 6. Focal neurological deficit
- 7. More than one episode of **vomiting**
- **8. Amnesia** for events > 30 min before impact
- 9. Any patient who has experienced some loss of consciousness or amnesia since the injury and:
 - is aged 65 years or older
 - is at risk of coagulopathy (history of bleeding, clotting disorder, current treatment with warfarin)
 - there is a dangerous mechanism of injury (a pedestrian or cyclist struck by a motor vehicle, an occupant ejected from a motor vehicle or a fall from a height of > than 1 m or five stairs).

Aims of TBI treatment

- To respect primary cerebral insult
- Secondary damage prophylaxis
- Cerebral oedema treatment (ICP-targeted therapy)
- Brain perfusion
 autoregulation disturbances
 (CPP-targeted therapy)
- † chance for recovery



INTRACRANIAL PRESSURE (ICP) PRESSURE [mmHg] MAP - ICP = CPP De-compensation phase **Transition** phase Compensation Phase 20 0 **VOLUME** Up to 15 mmHg, above 40 malignant oedema

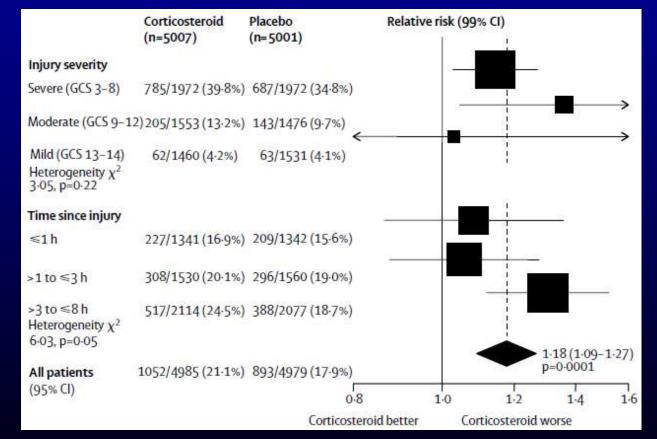
Raised ICP: immediate management

- Open the airway, intubation, mechanical ventilation, up to 6 hours keep P_aCO₂ 4.0 – 5.3 kPa (30-40 mmHg)
- Correct hypotension: colloids, infusions of inotropes
- Treat seizures
- Take blood for glucose, U+Es, calcium, liver enzymes, albumin, clotting screen, FBC (full blood count)

Multilevel treatment of intracranial hypertension in TBI

Smith M, Maas AIR: An algorithm for patients with intracranial pressure monitoring: filling the gap between evidence and practice. Intensive Care Med, https://doi.org/10.1007/s00134-019-05818-4

If MAP augmentation results in a reduction in ICP, confirming some degree of intact autoregulation.

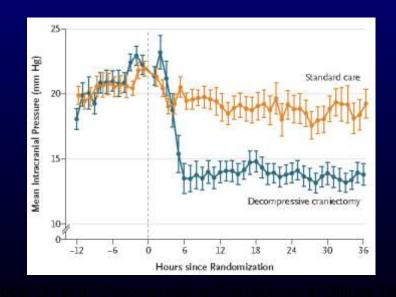

TREATMENT OF TRAUMATIC BRAIN INJURY

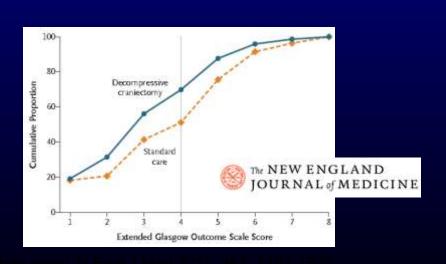
- ABC CPR
- Ventilation (paCO₂, paO₂)
- Cerebral perfusion (BP, anaemia...)
- Head position (medial line,15-30°)
- Venous drainage from head
- Anti-oedematous therapy
- Mannitol 20% 0.25-1.0 g/kg bw
- Furosemide

- PaCO₂ 4.5 kPa
- MgSO₄
- Lidocain
- Hypertonic Saline (HS 3-25%)
- Convulsions, cough (sedation, analgesia...)
- Thiopental, propofol (artificial sleep, analgo-sedation, deep sedation)
- Decompressive craniectomy

CRASH Trial – NO corticosteroids!

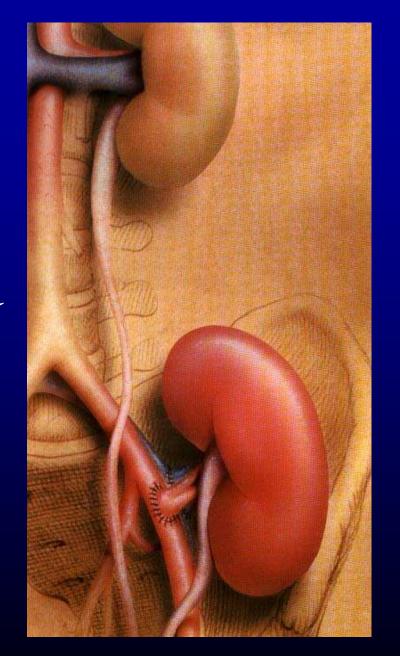
- Risk of death from all causes within 2 weeks was higher in the group allocated corticosteroids (1052 [21·1%] vs 893 [17·9%] deaths; relative risk 1·18 [95% CI 1·09–1·27]; p=0·0001).
- The relative increase in deaths due to corticosteroids did not differ by injury severity (p=0.22) or time since injury (p=0.05).




TBI, maxillofacial injury, haemothorax Tracheostomy – artificial ventilation, PEG, thoracic drainage

Decopmressive craniectomy

- In adults with severe diffuse traumatic brain injury and refractory intracranial hypertension,
- early bifrontotemporoparietal decompressive craniectomy decreased intracranial pressure and the length of stay in the ICU
- but was associated with more unfavourable outcomes.


ORGAN DONATION

Jozef Firment MD PhD

Department of
Anaesthesiology & Intensive Care Medicine
Šafárik University Faculty of Medicine,
Košice

Please: "Don't take your organs to heaven ..., heaven knows we need them here" on Earth.

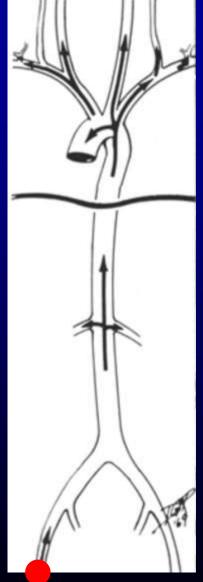
Brain death

 Is irreversible loss of the capacity for consciousness combined with irreversible loss of capacity to breathe

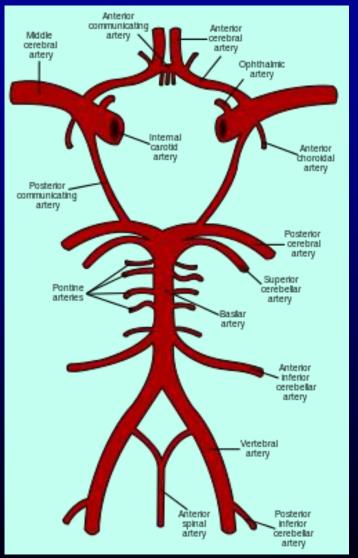
Preconditions

- No doubt that pt. has structural brain damage which has been diagnosed
- Pt must be in apnoeic coma (on mechanical ventilator)
- No possibility of drug intoxication, no significant metabolic, endocrine, electrolyte disturbance

CLINICAL BENCHMARKS FOR BRAIN DEATH


- Coma, GCS = 3, known irreversible cerebral lesion (Cave: intoxication, metabolic disturbances, hypothermia, myorelaxants). Absent functions of brain stem
- 2. Apnoea test no respiratory movements when the ventilator is disconnected and P_aCO₂ reaches 6,6 kPa
- 3. Lack rr of all 12 cerebral nerves
- No spontaneous muscle movements (spinal rr sometimes are present)
- 5. Absent panangiographic cerebral perfusion!
 Panangiography is confirmation test (no mandatory in Slovakia)

Testing for brain death


All brainstem reflexes must be absent (12 pairs)

- Pupils fixed and unresponsive to bright light
- Absent cornel reflexes
- Absent vestibulo-ocular reflexes
- No motor response within the cranial nerve distribution
- No reflex response to touching the pharynx, nor to a suction catheter passed into the trachea

Test for confirmation of brain death

Pan-angiography of cerebral vessels – after administration of contrast liquid into all 4 aa. - no perfusion

Brain death

- Brain death = death of person
- Brain death versus cardiac death
- Organ donation from deceased donors (HBD NHBD).
- Relatives organ donation from living donors.
- Opting out anyone who has not refused is a donor (Slovakia)
- Opting in anyone who has not given consent is not a donor

Brain death protocol

- 3-personal council
- Neurological status
- 12 h without sedation, relaxation
- Known brain lesion

Disconnection from ventilator

DONOR MONITORING

- Continual EKG
- NIBP á 10 min, CVT á 4-6 h,
- Diuresis/h, fluid balance
- K, Na, ABG á 4 h, SpO₂, (E_TCO₂)
- Body temperature (core)
- BP measurement invasive

Tx PROGRAM

ORGANS

- Kidney
- Heart
- Liver
- Lungs
- Pancreas

TISSUES

- (Blood)
- (Bone marrow)
- Cornea
- Bones