ANTIDIABETIC DRUGS

Ladislav Mirossay

P. J. Šafárik University
Faculty of Medicine
Department of Pharmacology
Košice

Glucose metabolism Cell energy supply

ATP Yield during Cellular Respiration

- Aerobic respiration is far more energy-efficient than anaerobic respiration:
- aerobic processes produce up to 38 ATP per glucose
- anaerobic processes yield only 2 ATP per glucose

Types of diabetes

- Type 1 diabetes
- insulin dependent
- also known as juvenile diabetes
- autoimmune disorder

• Type 2 diabetes

- also known as adult onset diabetes
- occurs in later life
- caused by insulin resistance
- body needs more insulin than secreted or the insulin is less effective
- Gestational diabetes
- acquired during pregnancy
- product of hormonal changes & also hereditary genes
- usually stops after childbirth

Normal regulation of blood glucose

- Insulin & glucagon are the hormones which maintain blood glucose in a very narrow range
- It is the production of *insulin &* glucagon by the pancreas which determines if a patient has:
- > diabetes
- hypoglycemia
- > some other glucose problem

Co-discovery of insulin

F. G. Banting (1891–1941)

J. J. R. Macleod (1876–1935)

C. H. Best (1899–1978)

Nobel Prize in Medicine for 1923 for the discovery of insulin, ignoring Charles Best. This incensed Banting who then chose to share half of the prize money with Best.

Glucose transporters

There are 3 classes & 14 types of GLUT proteins

- GLUT1 erythrocytes & endothelial cells of barrier tissues (such as the BBB; responsible for the low level of basal glucose uptake required to sustain respiration in all cells)
- GLUT2 renal tubular cells, liver cells, pancreatic β-cells, small intestine epithelium
- bidirectional transporter (bidirectionality is required in liver cells to uptake glucose (glycolysis) & release of glucose (gluconeogenesis); in pancreatic β-cells free flowing glucose is required so that the intracellular environment of these cells can accurately gauge the serum glucose levels)
- & GLUT3 neurons
- Solution Content of Content of

Insulin secretion

- Rise of blood glucose levels
- The uptake of glucose (GLUT2 transporter)
- Glycolytic phosphorylation ⇒ rise in the ATP:ADP ratio
- Inactivation of the K⁺ channel (ATP-dependent)
- Depolarization of the membrane
- Ca²⁺ channel opening
- Exocytotic release of insulin

Insulin-mediated glucose uptake

 Insulin binding to the insulin receptor allows the glucose transporter (GLUT4) to transport glucose into the cell

with

a concomitant in
 hepatic glucose
 release

Actions of insulin

- Regulates glucose metabolism
- Stimulates lipogenesis
- Diminishes lipolysis
- î amino acid transport into cells
- Modulates transcription (altering the cell content of numerous mRNAs)
- Stimulates growth, DNA synthesis & cell replication

(the last are the effects that it holds in common with the *insulin*-like growth factors – *IGFs & relaxin*)

Source: Fauci AS, Kasper DL, Braunwald E, Hauser SL, Longo DL, Jameson JL, Loscalzo J: Harrison's Principles of Internal Medicine, 17th Edition: http://www.accessmedicine.com

Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

Human insulins

- Human recombinant insulin
- > insulin lispro
- insulin aspart
- insulin glargine

Transfer and cloning of the Insulin gene

are the commonly-used insulins

Zinc as a component of insulin

Zn functions in *insulin* production in B-cells & duration of action:

- Completing proinsulin & formation of *insulin* hexamers (small amounts of *Zn*)
- This î proinsulin solubility & better insulin storage
- Addition of higher amounts of Zn → crystallisation of *insulin* & formation of insoluble *zinc* salts (microcrystal character of precipitated granule of insulin ↓ proteolysis):
- after s.c. inj. act as depot forms with slow release of *insulin* (î duration of action)

Insulin types

Insulin type	Action begins	Peak	Duration
Insulin Lispro	5 min	1 h	2 - 4 h
(Humalog®)			
Regular Insulin (Humulin R®)	15 - 30 min	2 - 4 h	4 - 6 h
Isophane Insulin (<i>HumuLIN N</i> ®)	30 - 60 min	4 - 8 h	20 - 22 h
Insulin Zinc (Lente®)	60 min	9 - 12 h	22 - 24 h
Insulin Detemir (Levemir®)	3-4 h	3 - 9 h (up to approximately 14 h)	up to 24 h
Insulin Glargine (Lantus®)	1.1 h	No pronounced peak	24 + h
Insulin Degludec (Tresiba®)	30 - 90 min	No peak in activity	24 + h (up to 42 h)

- Pre-Mixed Insulins: 50/50 or 70/30 Combined Regular & NPH or Lente insulins
- > 50/50 is 50% NPH & 50% Regular
- > 70/30 is 70% NPH & 30% Regular

Example of *insulin* treatment programs

 Split Mix Dose of 2 injections of rapid & intermediate insulin

Side effects of insulin

- Hypoglycemia can be brought about by:
- taking too much insulin
- missing or delaying meals
- exercising or working more than usual
- > an infection or illness (especially with diarrhea or vomiting)
- > a change in the body's need for insulin
- > diseases of the adrenal, pituitary, or thyroid gland, or progression of kidney or liver disease
- interactions with other drugs (oral hypoglycemics, salicylates, sulfonamides & certain antidepressants)
- consumption of alcoholic beverages
- Lipodystrophy
- Allergy to insulin

ORAL HYPOGLYCEMIC AGENTS Type 2 diabetes

Current pharmacologic treatments for type 2 diabetes:

- **f** *insulin* availability (either through direct insulin administration or through agents that promote insulin secretion)
- Improving sensitivity to *insulin* (in the periphery)
- 1 urinary glucose excretion
- Delaying the delivery & absorption of carbohydrate from the GIT

Principles of the treatment

- Initial therapy in type 2 diabetes patients should begin with diet, weight reduction, exercise
- Oral medication is initiated when 2 3 months of diet & exercise alone are unable to achieve or maintain their optimal plasma glucose levels:
- however, a trial of diet & exercise alone should be reserved for patients with asymptomatic hyperglycemia
- if patients are symptomatic, oral antidiabetic agents
 or *insulin* should be initiated (in concert with diet & exercise)
- metformin (in the absence of contraindications)

Classification of oral hypoglycemic drugs

- SULFONYLUREAS
- MEGLITINIDES
- GLP-1 based therapies:
- > DDP-4 inhibitors
- > GLP-1 agonists inj.
- BIGUANIDES
- **GLITAZONES** (THIAZOLIDINEDIONES)
- GLIFLOZINES
- ALPHA-GLUCOSIDASE INHIBITORS

SULFONYLUREAS

I. generation:

II. generation:

- acetohexamide
- > chlorpropamide
- > tolazamide
- tolbutamide

- > glibenclamide
- > glyburide
- > glipizide
- > glicazide
- > glimepiride

The second generation SU are primarily used now.

The mechanism of action of SU

- K⁺ channel blockers
- The effect on the pancreatic B-islet cells is to allow an influx of Ca²⁺ into the cell
- the release of *insulin*

SU derivatives

Tissue effects of SU

SU work:

- Primarily by stimulating pancreatic *insulin* secretion
- This in turn:
- hepatic glucose output
- peripheral glucose disposal

- Repaglinide (meglitinide drug class) acts like an extremely short-acting SU (an insulin secretagogue)
- The effect of *repaglinide* on the pancreas is very similar to that of the SU

It is potentially useful as a SU replacement

Advantages of MEG

- Because of the short duration, the patient does not have continuous high levels of insulin & the resulting adverse effects
- ➤ Its biggest advantage over the other oral hypoglycemic medications ⇒ it allows for flexible timing & missed meals
- Repaglinide has been approved for use with metformin & the combination appears to be a very effective

INCRETINS

Glucagon-like peptide-1-based therapies

There are two **incretins**, known as gut hormones:

- GIP (glucose-dependent insulinotropic peptide) &
- GLP-1 (glucagon-like peptide-1)
- they share many common actions in the pancreas but have distinct actions outside of the pancreas
- * they are released in the setting of a meal but not with *i.v.* carbohydrate &
- stimulate insulin synthesis & secretion
- They exert their main effect by:
- stimulating glucose-dependent insulin release
- slowing gastric emptying
- inhibiting inappropriate post-meal *glucagon* release

Adapted from 7. Drucker DJ. Cell Metab. 2006;3:153-165. 8. Miller S, St Onge EL. Ann Pharmacother 2006;40:1336-1343.

GLP-1-based therapies

- GLP-1-based therapies:
- DPP-4 inhibitors (dipeptidyl peptidase-4)
- GLP-1 receptor agonists
- Affect glucose control through several mechanisms, including:
- enhancement of glucose-dependent insulin secretion
- slowed gastric emptying
- * reduction of postprandial glucagon & of food intake

DPP-4 inhibitors MOA

- \Downarrow the degradation of the incretins (GLP-1 & GIP) resulting in:
- * \Uparrow insulin production in the pancreas β -cells
- * \Downarrow of *glucagon* production from pancreatic α cells
- reduced production of glucose by the liver

GLP-1 RECEPTOR AGONISTS Incretin mimetics

- **Exenatide** (Byetta)
- Lixisenatide (Lyxumia)
- Albiglutide (Tanzeum)
- **Dulaglutide** (Trulicity)
- They have blood-sugar lowering actions alone
- Can also be combined with other medications such as *pioglitazone*, *metformin*, SU &/or *insulin* to improve glucose control

- Secondary effects of drug administration reduce:
- the rate of gastric emptying
 &
- food intake (mitigating the potential severity of hyperglycaemic events after meals)

Injected

(twice per day)

Exenatide

Mechanism of action

BIGUANIDES BG

- Two drugs in this category are:
- > phenformin
- metformin
- The use of *phenformin* has ↓ considerably
- It is usually metformin that is now used when a biguanide is prescribed

The MOA of BG

- Has been well studied in liver, adipose tissue, skeletal & heart muscles
- BG do not stimulate endogenous insulin secretion
- Therefore they are sometimes called antihyperglycemic agents rather than hypoglycemic agents
- Their tissue effects result rather in ↓ insulinemia
- Most of tissue effects are the result of the activation of AMPK (AMP-activated protein kinase) by *metformin*

Tissue effects of BG

BG work mainly by:

- Understand
 Understand
- 1 insulin sensitivity
- ft glucose utilization in peripheral tissues (by muscles & adipocytes)
- possibly ↓ food intake & thus ↓ intestinal glucose absorption

C. Metformin

Metformin SE

- Commonly reported side effects of *metformin* include:
- nausea, vomiting, diarrhea, flatulence...
- Hypoglycemia does not occur when *metformin* is used alone
- Lactic acidosis reported

 (< 1/10 000) have occurred
 predominantly in patients
 with poor renal function

GLITAZONES TZD or thiazolidinediones

- **TZD** (glitazones) \Rightarrow developed in 1997
- Offer *metformin*-like mechanism for treatment of type 2 diabetes
- The first, *troglitazone* was taken off the market in 1999 (hepatic toxicity)
- Rosiglitazone & pioglitazone have been available since 1999

The MOA of TZD

- The primary effect of TZD is peripheral, with
 insulin sensitivity &
 glucose uptake
- The TZD have some effect on hepatic glucose uptake & sensitivity

(to a lesser degree)

• They do not stimulate the pancreas to produce more *insulin*

Advantages of TZD

- TZD are hepatically metabolized & thus can be used safely in patients with renal dysfunction
- They can be dosed once daily, although *rosiglitazone* works better with twice-daily dosing
- Reports have suggested that *rosiglitazone* works better in women (the reason ⇒ not known)

AVANDIA Film-coated tablets rosiglitazone

28 film-coated tablets

GLIFLOZINS SGLT2 inhibitors

- Normal renal glucose handling:
- 100% reabsorption of glucose in proximal tubules by sodiumglucose transport protein 2:
- ▷ SGLT-2 = 90%
- > SGLT-1 = 10%
- In DM:
- filtered load exceeds
 reabsorption capacity

Source: Access Medicine © 2013 McGraw Hill Companies

Gliflozins MOA

- I reabsorption
 of glucose in
 the kidney &
 therefore lower
 blood sugar
- Act by USGLT2 (also called SGLT2 inhibitor)

Gliflozins Clinical use & SE

Uses:

- Treatment of type 2 DM:
- can improve glycemic control in conjunction with excercise & diet
- reduce body weight
- reduce systolic & diastolic
 BP
- can be combined with *metformin, sulfonylureas, pioglitazone & insulin*

SE:

- Gliflozins (canagliflozin, dapagliflozin, empagliflozin) May lead to ketoacidosis
- Other side effects include:
- It risk of urinary tract infections
- candidal vulvovaginitis
- hypoglycemia

ALPHA-GLUCOSIDASE INHIBITORS - AGI

- Acarbose is an AGI that slows down the breakdown of:
- > disaccharides
- > polysaccharides
- other complex
 carbohydrates

into monosaccharides:

- > the enzymatic generation & subsequent absorption of glucose is delayed & the postprandial blood glucose values are ↓
- AGIs do not prevent the absorption of carbohydrates & complex sugars, but they do delay their absorption

Disadvantages of AGI

- One disadvantage with the use of acarbose is that it is to be taken along with the first bite of a meal
- Moreover, it has to be taken 3x daily with meals
- These factors often lead to non compliance & a ↓ in the efficacy of the drug

Summary of some oral hypoglycemics - sites of action

Drawing by Alexandra Sternin