Resuscitation in special situations

M. Grochová MD, PhD. I.KAIM, UPJŠ LF and UNLP, Košice First aid GM 1, DM 2 2020

Special situations

- Poisoning
- Drowning
- Accidental hypothermia
- Electrocution

- Pregnant women resuscitation
- Children resuscitation

Poisoning – prevention of cardiac arrest

- ABCDE access
- Most often airways obstruction, apnea
- Consciousness disturbance
- Stomach content aspiration –drugs – CNS depression
- Early airways opening
- Low blood pressure infusions, vasopressors (e.g. noradrenalin)
- Long lasting coma without movement - rhabdomyolysis (muscles destruction)

• Potassium monitoring

- Body temperature disturbances
- Drugs overdosing hypothermia or hyperthermia (hyperpyrexia)
- Blood and urine samples saved for hospital
- Save drug or other material
- Decontamination
- Suicide often connected with alcohol intoxication

Poisonning management

- Seizures treatment diazepam i.v. ev. Thiopental)
- Prevention of **aspiration** recovery position
- Vomitus activation (only awake patient) not very recommended
- Contraindication of vomitus alkali burns oesophagus, stomach
- Antidote application

Elimination methods in poisoning

- **Inhalation** CO fresh air, HBO
- Skin organophosphates-water cleaning gloves, face mask, safety coating
- **GIT** vomiting
- Stomach lavage, active coal
- To 1 hour after ingestion
- Elimination from organism kidneys (dialysis...)

Stomach lavage

- Dilution of 45 g normal saline (cca 3 soup spoon) in 5 liters of cool water
- Lavage as long as clear water flows mushrooms
- Active coal 1g/ 1 kg body weight in 250 ml of water

Poisoning - opioids

Depression of breating, apnoe

Prevention of tracheal intubation naloxon 400 µg i.v. 800 µg i.m 800 µg s.c. 2 mg i.nasal **Total dose** 6 - 10 mg

Duration of actionnaloxon14 - 70 mindepression of breathing4 - 5 hod

Naloxon

pulmonary oedema cardiac arrhytmias agitation

Drowning

- **Asfyxia** airways occlusion after drowning
- Connected with aspiration, submersion, bacterial contamination of airways
- No longer used clasification: Wet drowning - aspiration
 Dry drowning – without aspiration (laryngospasm)

BLS - breathing

- Personal safety
- Initial arteficial breaths important 1 min
- Trained professionals in water
- Others shallow water, waterside
- Non breathing
 - If > 5 min towards the waterside + 1 min then stop artef.
 breaths and transfer the victim towards the waterside
 If < 5 min towards the waterside transfer synchronized with arteficial breaths
 - No effort to empty airways
 - Regurgitation by 86% of pac. breathing and chest compressions
 - BLS, ALS

Drowning

Fresh water:

liquid shifts into vessels because of low osmotic pressure

- hypervolemia, haemolysis

Sea water:

liquid shifts into lungs because of high osmotic pressure

- hypovolemia, haemoconcentration

Drowning – ILCOR clasification

(International Liaison Committee on Resuscitation)

- Immersion face and airways under water or other fluid
- Submersion
 - whole body under water or other fluid, airways included

- No more use:
- Wet drowning

- Dry drowning
- Drowned
- Near drowned
- Utstein protocol for registration

Youn CS, Choi SP, Yim HW, Park KN Out-of-hospital cardiac arrest due to drowning: An Utstein Style report of 10 years of experience from St. Mary's Hospital. Resuscitation. 2009 Jul;80(7):778-83. Epub 2009 May 13.

Drowning

- Secundary drowning respiratory insuficiency
- 72 hours after submersion/immersion
- Every patient hospitalized

Drowning

If a person fails through ice, and there is more than one person on solid ground, form a chain of bodies. from a secure location out to the fallen person

MADAM

- Hypoxia
- Cold environment: better tolerancy of hypoxia
- Decreased rate of metabolism
- Start resuscitation even after 20-60 min of submersion

- Breathing
- Chest compression not effective in the water, start on the waterside
- C spine
- Dry skin
- When BT < 30°C maxim. 3 shocks, continue after warming

Accidental hypothermia

- Light 35 32 ° C
- Mild 32 28 ° C
- Severe < 28 ° C
- Swiss staging system
- 5 steps
- hypothermia before
- asfyxia good outcome

warming **BLS** ALS when normothermia BT >35 °C stiff chest warming to BT 30 °C, doubled intervals between drug doses

Pregnant women resuscitation

Causes of cardiac arest

- •Cardiac disease
- Trombembolism
- •Amniotic fluid embolism
- Pregnancy related hypertension
- •Extra-uterine gravidity
- •Bleeding
- Sepsis
- Psychiatric disorders

Pregnant women resuscitation

•Left lateral position (15 degrees left)

•Hands position upper than in the middle of sternum

•Adhesive electrodes more useful

•OTI with the pressure on the cricoideal cartilage (Sellick maneuver)

Pregnant woman resuscitation

- Delivery can improve the chance on successful resuscitation of mother and newborn
- Beginning of the hysterotomy would be in 4 min. after cardiac arest

Pregnant woman resuscitation

- Gestational age < 20 weeks : no C.S.
- Gestational age 20 23 weeks : urgent C.S. for mother sake
- Gestational age > = 24 25 weeks : urgent C.S. for mother and newborn sake

Pregnant women defibrilation

- Adhesive electrodes preferred
- Standard energy 150-200 J biphasic

360 J monophasic

Prevention of cardiac arrest in pregnant women

- Left lateral position or shift uterus manually to the left side
- According to pulse oximetry high flow oxygen inhalation
- Bolus of fluids if hypotension or signs of hypovolemia
- Immediately check the need of some drugs
- Immediately call specialists obstetrician, neonatologist
- Recognize and treat the cause of cardiac arrest

Electrocution

Alternate current (AC)

- Tetanic seizures
- Arrest of breathing respiratory center paralysis, muscles
- VF R-T phenomenon
- Spasm of coronary arteries, ischemia
- Hand to hand fatal outcome

Continuous current (CC)

- asystole
- primary
- secondary

Lightning strike BLS 30 minutes current present in environment

Electrocution

- Devastating multisystem injury
- adults in the workplace, high voltage
- **children primarily at home**, voltage is lower (220V in Europe, Australia and
- Asia; 110V in the USA and Canada
- Electrocution from lightning strikes
- Electric shock injuries direct effects of current on cell membranes and vascular smooth muscle
- Respiratory arrest may be caused by paralysis of the central respiratory control system or the respiratory muscles
- Current may precipitate VF if it traverses the myocardium during the vulnerable period (analogous to an R-on-T phenomenon)
- Electrical current may also cause myocardial ischemia because of coronary artery spasm
- Asystole may be primary, or secondary to asphyxia following respiratory arrest

ERC 2010

Electrocution - resuscitation

- Ensure that any power source is switched off and do not approach the casualty until it is safe
- Start **standard basic and advanced life support** without delay
- Airway management may be difficult if there are electrical burns around the face and neck
- Early tracheal intubation is needed in these cases, as extensive soft-tissue edema may develop causing **airway obstruction**
- Head and spine trauma can occur after electrocution
- Immobilize the spine until evaluation can be performed
- **Muscular paralysis**, especially after high voltage, may persist for several hours; ventilation support is required during this period
- **VF** is the commonest initial **arrhythmia** after high-voltage AC shock; treat with prompt attempted defibrillation
- Asystole is more common after DC shock; use standard protocols for this and other arrhythmias.
 ERC 2010

Electrocution - resuscitation

- Remove smouldering clothing and shoes to prevent further thermal injury
- Vigorous fluid therapy is required if there is significant tissue destruction
- Maintain a good urine output to enhance the excretion of myoglobin, potassium and other products of tissue damage
- Consider early surgical intervention in patients with severe thermal injuries
- Maintain spinal immobilization if there is a likelihood of head or neck trauma
- Conduct a thorough secondary survey to exclude traumatic injuries caused by tetanic muscular contraction or by the person **being** thrown
- Electrocution can cause severe, **deep soft-tissue injury** with relatively minor skin wounds, because current tends to follow neurovascular bundles
- look carefully for features of compartment syndrome, which will necessitate fasciotomy. ERC 2010

Lightning strike

 Lightning strikes deliver as much as 300 kV over a few milliseconds

- In those who survive the initial shock, extensive catecholamine release or autonomic stimulation may occur
- hypertension, tachycardia, non-specific ECG changes (including prolongation of the QT interval and transient T-wave inversion) and myocardial necrosis
- Mortality from lightning injuries is as high as 30%, with up to 70% of survivors sustaining significant morbidity ERC 2010

Paediatric basic life support

Simplification based on the knowledge that many children receive no resuscitation at all because rescuers **fear doing harm**

Age: newborn an infant - a child under 1 year of age a child - between 1 year and puberty

Pediatric life support BASIC LIFE SUPPORT (BLS)

Breathing

CPR IN CHILDREN

- Adult CPR techniques can be used on children
- Compressions 1/3 of the depth of the chest

Approach safely	Approach safely
Check response	Check response
Shout for help	Shout for help
Open airway	Open airway
Check breathing	Check breathing
Call 112	Call 112
5 breaths, 30 chest compressions	Attach AED
2 rescue breaths	Follow voice prompts

BLS children

Compression/ventilation ratio

- 30:2 bystanders, single professional
- 15:2 two professionals
- Ventilation
 - 5 breaths first
 - Mouth to nose
 - Mouth to mouth
 - Duration of inspirium 1 1,5 s

Automated External Defibrillation Algorithm

AED - children

- Age > 8 years
 - AED as adult
- Age 1-8 years
 - Use electrodes and device for children if accesible/or adult
- Age < 1 year
 - Use only if safe

ATTACH PADS TO CASUALTY'S BARE CHEST

ANALYSING RHYTHM DO NOT TOUCH VICTIM

SHOCK INDICATED

- Stand clear
- Deliver shock
DEFIBRILLATION

Ventilation

Chest compressions

Foreign body obstruction

Paediatric basic life support

BLS children

look for signs of a circulation: any movement, coughing or normal breathing (not agonal gasps, which are infrequent, irregular breaths);

BLS children

 Take a breath and cover the mouth and nasal apertures of the infant with your mouth, making sure you have a good seal

• Blow steadily into the infant's mouth and nose over 1—1.5 s, sufficient to make the chest visibly rise

• Take another breath and repeat this sequence five times

BLS children

No effective breathing:

- the airway may be obstructed.
- Open the child's mouth and remove any visible obstruction
- Ensure that there is adequate head tilt and chin lift airway
- Make up to **five attempts** to achieve effective breaths; if still unsuccessful, move on to chest compressions.

Chest compressions

Chest compressionschildren

Newborn resuscitation

Open lungs – Ambu bag with face mask, inspiration 2-3 s

Initial inflation pressure to increase heart rate (HR) Mature newborn HR minimaly 60 beats /min. Persistent bradycardia – increase oxygen flow

Meconium – remove only in weak newborn

Chest compression to arteficial breaths ratio 3:1 i.e. 90 chest compression : 30 breaths per minute

Check HR every 30 second, STOP when HR > 60/min

Circulatory support succesful only when opened lungs Check temperature (cover, heating lamp)

Newborn Life Support

Newborn resuscitation

