Subject:	Medical Chemistry	Code: ULCHBKB/MCH-GM/22		
Study Programme:	General Medicine	Study Period:1. semester		
Evaluation:	Exam	Subject Type: compulsory		compulsory
Content:	2 h lectures and 2 h practical exercises / week			Total 56 hours

Workplace: Department of Medical and Clinical Biochemistry, UPJŠ in Košice, FM

Week	Lectures https://portal.lf.upjs.sk/index-en.php	Practical Lessons https://portal.lf.upjs.sk/index-en.php
1.	 INTRODUCTION TO MEDICAL CHEMISTRY Definition of terms International (English) nomenclature Properties of elements, micro- and macro-elements WATER AND SOLUTIONS Water, properties and biological function of water Disperse systems, properties of disperse systems Solutions 	 PRINCIPLES OF LABORATORY TECHNIQUE Laboratory safety rules Equipment of laboratory bench exercise: <i>Volume measurement</i>
2.	 BIOCHEMICAL REACTIONS PROCESS RULES I Kinetics of chemical reaction Effect of reactant concentration, temperature on reaction rate. Order of reaction rate Arrhenius, Brönsted-Lowry and Lewis theory Autoprotolysis, H⁺ exponent pH of acids and bases. Buffer systems. Hydrolysis of salts Equilibrium of a chemical reaction, equilibrium constant Impact of factors on chemical equilibrium 	NOMENCLATURE OF INORGANIC COMPOUNDS (English) CALCULATIONS - Stoichiometric calculations
3.	 BIOCHEMICAL REACTIONS PROCESS RULES II The basics of chemical thermodynamics Internal energy, enthalpy, entropy Gibbs free energy, chemical reaction spontaneity Precipitation reactions, solubility equilibrium Complexation reactions, complex formation Redox reactions, redox potential Electrode potential of metals, Electrochemistry 	CALCULATIONS - Solutions VOLUMETRIC ANALYSIS - exercise: Standardization of NaOH solution
4.	ORGANIC CHEMISTRY I - Alcohols and aldehydes - Carboxylic acids - Functional derivatives of carboxylic acids - Substitutional derivatives of carboxylic acids - Carbonic acid derivatives	 CALCULATIONS Calculation of pH of acid, base, and salt solutions pH MEASUREMENT exercise: Preparation and pH measurement of acetate buffers
5.	 ORGANIC CHEMISTRY II Organic sulphur, phosphorus, nitrogen compounds, structure, and biological significance 5-membered heterocycles with one or more heteroatoms 6-membered heterocycles with one or more heteroatoms 	CALCULATIONS - Calculation of buffers pH BUFFER SYSTEMS - exercise: Effect of acids and bases on pH of buffers
6.	 1st REVISION TEST ORGANIC CHEMISTRY III Biochemically and medicinally important derivatives of heterocyclic compounds (purines, pyrimidines, hormones, medicinal drug, dyes) Heterocycles in drugs 	CALCULATIONS - Balancing redox reactions PROPERTIES OF ORGANIC COMPOUNDS - exercise: Preparation of esters of carboxylic acids

7.	 SACCHARIDES AND THEIR IMPORTANT DERIVATIVES The relationship between structure and biological properties of saccharides Biologically important monosaccharides and their derivatives Disaccharides and polysaccharides Complex saccharides and their importance 	 CALCULATIONS Spectrophotometric calculations SPECTROPHOTOMETRY exercise: Spectrophotometric determination of copper with ammonia 	
8.	LIPIDS AND STEROIDS - Basic structure and classification of lipids - Fatty acids, their medical importance - Eicosanoids - Complex lipids - Steroids – classification, importance	 SACCHARIDES exercise: Nitrochromium reaction exercise: Seliwanoff's reaction exercise: Tollen's reaction exercise: Tollen's reaction (silver mirror) exercise: Fehling's reaction exercise: Lugol test 	
9.	 AMINO ACIDS, PEPTIDES Classifications of amino acids, biochemical properties and their use in biochemistry Amino acid derivatives and their biochemical significance Peptides – structure, peptide bond, properties Biochemically important peptides (e.g. glutathion) 	LIPIDS exercise: Hydrolysis of neutral lipids by lipase exercise: Detection of double bonds in fatty acids 	
10.	 PROTEINS Spatial structure, classification, physical-chemical properties, biological and biomedical importance Functional protein dispersity Complex proteins and their function Isolation methods and their use in medical practice 	 AMINO ACIDS exercise: Ninhydrin reaction exercise: Xanthoprotein reaction exercise: Foli's reaction exercise: Determination of unknown protein 	
11.	 NUCLEIC ACIDS Nucleotides and nucleosides Biochemically important nucleotides with high energy hydrolysis DNA and RNA - structure and biologic properties Nucleic acid analysis techniques, their use in medical practice (restriction enzymes, PCR) 	 PROTEINS exercise: <i>Reversible precipitation of proteins</i> exercise: <i>Irreversible precipitation of proteins</i> exercise: <i>Biuret reaction</i> 	
12.	 2nd REVISION TEST NATURAL COMPOUNDS, VITAMINS Terpenes, alkaloids and flavonoids - structure physical- chemical properties, biological significance General properties of vitamins - structure and their importance in biochemistry (e.g. coenzymes) and in medicine 		
13.	OXIDATIVE STRESS - Biological importance of free ions in biosphere - Formation of oxygen and nitrogen radicals - Antioxidants	NUCLEIC ACIDS II - exercise: Detection of nucleic acids components 3 rd REVISION TEST – practical exercises, seminars	
14.	MEMBRANES AND TRANSPORT - Structure of biological membranes - Membrane proteins - Transport of substances across biological membrane - Free diffusion, facilitated diffusion - Active transport, group translocation	 EVALUATION OF STUDENTS' WORK Final evaluation of practical exercises Credit donation 	