Lectures and practical exercises

Subject:	Medical Chemistry	Code: ULCHBKB/MCH-GM/22		
Study Programme:	General Medicine	Study Period: 1. semester		1. semester
Evaluation:	Exam	Subject Type: compulsor		compulsory
Content:	2 h lectures and 2 h practical exercises / week			Total 56 hours

Workplace: Department of Medical and Clinical Biochemistry, UPJŠ in Košice, FM

Week	Lectures https://portal.lf.upjs.sk/index-en.php	Practical Lessons https://portal.lf.upjs.sk/index-en.php
1.	INTRODUCTION TO MEDICAL CHEMISTRY - Definition of terms - Properties of elements, micro- and macro-elements - Types of chemical bonds and interactions WATER AND SOLUTIONS - Water, properties and biological function of water - Disperse systems, properties of disperse systems - Solutions	PRINCIPLES OF LABORATORY TECHNIQUE - Laboratory safety rules - Equipment of laboratory bench - exercise: Volume measurement
2.	 BIOCHEMICAL REACTIONS PROCESS RULES I Kinetics of chemical reaction Effect of reactant concentration, temperature on reaction rate, order of reaction rate Acid-base reactions – pH, hydrolysis of salts Buffer systems – Henderson-Hasselbalch reaction Equilibrium of a chemical reaction, equilibrium constant 	NOMENCLATURE OF INORGANIC COMPOUNDS (English) CALCULATIONS - Stoichiometric calculations
3.	BIOCHEMICAL REACTIONS PROCESS RULES II - The basics of chemical thermodynamics - Gibbs free energy, chemical reaction spontaneity - Precipitation reactions, solubility equilibrium - Complexation reactions - Redox reactions – redox potential - Electrode potential of metals	CALCULATIONS - Solutions VOLUMETRIC ANALYSIS - exercise: Standardization of NaOH solution
4.	ORGANIC CHEMISTRY I - Hydrocarbons – structure, reactions - Derivatives of hydrocarbons – alcohols and aldehydes - Carboxylic acids – structure, reaction, importance - Functional and substitutional derivatives of carboxylic acids	CALCULATIONS - Calculation of pH of acid, base, and salt solutions pH MEASUREMENT - exercise: Preparation and pH measurement of acetate buffers
5.	ORGANIC CHEMISTRY II - Carbonic acid derivatives - Organic sulphur, phosphorus, nitrogen compounds, structure, and biological significance - 5-membered and 6-membered heterocycles with one or more heteroatoms	CALCULATIONS - Calculation of buffers pH BUFFER SYSTEMS - exercise: Effect of acids and bases on pH of buffers
6.	1st REVISION TEST* ORGANIC CHEMISTRY III - Biochemically and medicinally important derivatives of heterocyclic compounds (e.g. purines, pyrimidines, medicinal drug, dyes)	CALCULATIONS - Balancing redox reactions ORGANIC COMPOUNDS - exercise: Preparation of esters of carboxylic acids
7.	SACCHARIDES AND THEIR IMPORTANT DERIVATIVES - Saccharides – classification, structure, reactions	CALCULATIONS - Spectrophotometric calculations

Lectures and practical exercises

	 Biologically important monosaccharides, disaccharides, and their derivatives Oligosaccharides and polysaccharides – classification, structure, importance Complex saccharides (e.g. peptidoglycans, proteoglycans, glycoproteins) and their importance 	SPECTROPHOTOMETRY - exercise: Spectrophotometric determination of copper with ammonia
8.	LIPIDS AND STEROIDS - Basic structure and classification of lipids - Fatty acids (FA) – structure, reactions, classification - Triacylglyceroles (TAG) and sphingolipids – structure, classification, properties - Eicosanoids – classification, biological importance - Complex lipids (e.g. phospholipids, lipoproteins) - Derivated lipids (e.g. steroids) – classification, structure, biochemical importance	SACCHARIDES - exercise: Nitrochromium reaction - exercise: Seliwanoff's reaction - exercise: Tollen's reaction - exercise: Tollen's reaction (silver mirror) - exercise: Fehling's reaction - exercise: Lugol test
9.	 AMINO ACIDS AND PEPTIDES Amino acids (AA) – classification, structure, reaction, biochemical properties Important derivatives of AA – biochemical significance Peptides – peptide bond, classification, properties Biochemically important of peptides (e.g. glutathion) 	LIPIDS - exercise: Hydrolysis of neutral lipids by lipase - exercise: Detection of double bonds in fatty acids
10.	PROTEINS - Proteins – structure, classification, physical-chemical properties, biochemical function - Biological and biomedical importance proteins (e.g. hemoglobin, collagen, elastin) - Complex proteins and their function - Isolation methods and their use in medical practice	AMINO ACIDS - exercise: Ninhydrin reaction - exercise: Xanthoprotein reaction - exercise: Foli's reaction - exercise: Determination of unknown protein
11.	NUCLEIC ACIDS - Nucleosides and nucleotides – structure, properties - DNA – structure, classification, properties, function - RNA – structure, classification, properties function - Nucleic acid analysis techniques, their use in medical practice (e.g. restriction enzymes, PCR)	PROTEINS - exercise: Reversible precipitation of proteins - exercise: Irreversible precipitation of proteins - exercise: Biuret reaction
12.	2nd REVISION TEST* OTHER MEDICALLY IMPORTANT COMPOUNDS - Terpenes, alkaloids and flavonoids – structure physical-chemical properties, biological significance - Vitamins – structure, classification, properties, biochemical importance (e.g. coenzymes)	NUCLEIC ACIDS I - exercise: Isolation of nucleoproteins from eukaryotic cells - exercise: Hydrolysis of nucleoprotein
13.	OXIDATIVE STRESS - Reactive oxygen and nitrogen species - Mechanisms of oxidative damage to FA and proteins - Antioxidant protection in the body - Natural antioxidants	NUCLEIC ACIDS II - exercise: Detection of nucleic acids components 3rd REVISION TEST – practical exercises, seminars*
14.	MEMBRANES AND TRANSPORT - Structure of biological membranes - membrane proteins - Transport of substances across biological membrane - Free diffusion, facilitated diffusion - Active transport, group translocation	EVALUATION OF STUDENTS' WORK - Final evaluation of practical exercises - Credit donation

^{*} After writing the revision test, students can view the evaluation of their answers within one week