

- Definition: Acute inflammatory process at the level of respiratory bronchioli, alveolar structures and/or interstitium
- Epidemiology: Pneumonias are the most common among all infections
- 4th among causes of death worldwide
- Mortality: 18/100 000 per year

## Classification (general)

A. Based on etiology: 1. Infectious2. Non-infectious (*"pneumonitis"*)

- B. Based on the acuteness/chronicity
  - 1. Acute
  - 2. Recidive
  - 3. Chronic
- C. Based on the association with other disease:
  - 1. Primary
  - 2. Secondary (e.g., post-obstructive)
    - (tumour, foreign body...)

# Classification of *infectious* pneumonias

A. Based on pathological finding:

1. Lobar – primarily at the level of alveoli

2. Bronchopneumonia – primarily at the level

of bronchioli, spreading into alveoli

3. Interstitial – primarily in interstitium,

B. Based on clinical course: 1. Typical2. Atypical

# Classification of *infectious* pneumonias

C. Based on the the location of acquisition:

1. Community – acquired (CAP)

- 2. Hospital ascquired (HAP)
- 3. Ventilator acquired (VAP)

## Host defenses along the airways



| Ciliated | Viruses (cytotoxic)                                                                          |
|----------|----------------------------------------------------------------------------------------------|
|          | Mycoplasma (shear off cilia)                                                                 |
| - P      | _ Bordetella pertussis                                                                       |
|          | (proximal part of cilium)                                                                    |
|          | Streptococcus pneumoniae                                                                     |
|          | (do not attach to cilia; produce IgA protease<br>and substances that slow or paralyze cilia) |
| Mismau   | Pseudomonas aeruginosa                                                                       |
|          | Neisseria meningitidis                                                                       |
| Trinted  | (attach to microvilli, then phagocytized<br>by cell; also have pili and IgA protease)        |

## Community – acquired Pneumonia (CAP)

General Characteristics (both lobar and lobular)

### **1.** At least one respiratory symptom:

- Cough
- Shortness of breath
- Pleuritic chest pain
- Hemoptysis
- Sputum production

### 2. At least one general symptom: fever, chills,

myalgia, headache, arthralgia (exogenous and endogenous pyrogens: interleukins, TNFalpha)

### 3. A new opacity on chest radiograph

## Bronchopneumonia Diagnostic procedures

- Assess vital functions!
- Physical examination
- Laboratory findings
- Chest X-Ray

immediately

- Arterial blood gases (immediately in case of distress)
- Microbiology
- Bronchoscopy (for differential diagnosis, i.e., tumor, etc. not all)
- CT (for differential diagnosis, i.e., tumor, etc. not all patients)
- Immunological investigation (to rule out immune deficit not all)

### Bronchopneumonia

### Vital functions – assessment of severity

Vital functions

- 1. State of conciousness
- 2. Heart rate
- 3. Blood pressure
- 4. Respiratory rate (>30 = severe pneumonia)



- comorbidities

Determine where the patients will be treated !!

- at home
- hospital general ward
- hospital ICU

### CURB score

A clinical prediction rule that has been validated for predicting mortality in CAP (and infection of any site).

- Confusion of new onset
- Blood Urea nitrogen greater than 7 mmol/l (19 mg/dL)
- Respiratory rate of 30 breaths per minute or greater
- Blood pressure less than 90 mmHg systolic or diastolic blood pressure 60 mmHg or less
- Age 65 or older

1 point each. Score 0-1 low risk, 2 or more high risk of mortality

## **Physical Findings**

Any of the findings of *consolidation of lung tissue* :

- dullness on percussion, increased tactile and vocal fremitus
- bronchial breathing
- adventitious sounds crackles, rales

If pleura is affected by inflammation:

- pleural friction rub

### **Chest X-Ray**

#### **<u>Chest radiographs-</u>** postero-anterior and lateral views



#### **INFILTRATE !**

### Chest X-Ray in bronchopneumonia



INFILTRATE – bilateral in atypical CAP (Mycoplasma, viruses)

### Pleural effusion (exsudate, empyema)



### Typical versus atypical pneumonia

Typical: Clinical status + physical finding (bronchial breathing + rales) corresponds with chest X-Ray

Atypical: Clinical status + physical finding (no major pathology on auscultation !!) do NOT correspond with the extent of chest X-Ray finding atypical – different pathogens

Oxygenation status

#### Transcutanous oxygen saturation (SatO<sub>2</sub>)

should be measured in all patients presenting to an emergency room

An arterial blood gas – in everyone with  $SatO_2 < 92\%$ , and those with COPD or another underlying lung disease

#### **Respiratory failure**

- **Hypoxemic** reduction of PaO<sub>2</sub> < 8 kPa
- **Hypercapnic** increase of  $PaCO_2 > 6.3$  kPa
- **Acidosis** reduction of pH < 7.36

## Laboratory findings

- WBC count: leucocytosis neutrophilia (also leucopenia and lymphopenia possible !)
- C-reactive protein (CRP) 40 500 mg/l
- Procalcitonine
- Blood cultures (if suspected sepsis)
- Serology (antibodies against pathogens: IgM, IgG, IgA) (mycoplasma, chlamydia species)
- Routine blood chemistry: glucose, urea (BUN), sodium

Markers of inflammation

### **Pneumonia-specific Severity of Illness Score**

- a predictive tool for mortality including also laboratory and CXR findings

| • | Patient characteristic   | Points assigned     |
|---|--------------------------|---------------------|
|   | Males                    | age (years)         |
|   | Females                  | age (years)mínus 10 |
|   | Nursing home residence   | +30                 |
|   |                          |                     |
| • | <u>Comorbid illness</u>  |                     |
|   | Neoplastic disease       | +30                 |
|   | Liver disease            | +10                 |
|   | Congestive heart failure | +10                 |
|   | Cerebrovascular disease  | +10                 |
|   |                          |                     |

+10

Renal disease

### **Physical examination findings**

| Altered mental status    | +20 |
|--------------------------|-----|
| Respiratory rate >30/min | +20 |
| Systolic BP< 90 mm Hg    | +20 |
| Temperature<30°C or>40°C | +15 |

### **Laboratory findings**

| Pulse>125/min.      | +10 |
|---------------------|-----|
| pH<7,35             | +30 |
| BUN>10,7 mmol/L     | +20 |
| Sodium<130mmol/L    | +20 |
| Glucose>13,9 mmol/L | +10 |
| Hematocrit<30%      | +10 |
| pO2<60mm Hg         | +10 |
| Pleural effusion    | +10 |

### **Microbiological examination**

- Aim: Identification of the infectious agens
- Material: pharyngeal swab (beware: contamination, colonisation) sputum bronchoalveolar lavage fluid bronchial secretion gained by suction (in an intubated patient on ventilator )
- Methods: Microscopy staining: Ziehl-Neelsen, Gomori, etc..... Aerobic and anaerobic cultivation Special methods: PCR

### Most common pathogens in CAP

### A. Treated on the outpatient basis (*i.e.*, mild)

| Mycoplasma pneumoniae     | 24% |
|---------------------------|-----|
| Streptococcus pneumoniase | 5%  |
| Chlamydia pneumoniae      | 5%  |
| Haemophilus influenzae    | 2%  |
| Unknown                   | 48% |

### B. <u>Requiring hospital admission (mild or severe)</u>

Streptococcus pneumoniae17-50%Haemophilus influenzae7%

Staphylococcus, Legionella, Mycoplasma, Chlamydia, Pneumocystis, Fungi, anaerobes

## Pathogens involved in atypical CAP

Mycoplasma pneumoniae24%Chlamydia pneumoniae5%Legionella pneumoniae5%RickettsieViruses

Intracellular pathogens!!

They require antibiotics with intracellular mode of action !!

Beware: Up to 10% of patients have more than one pathogen identified.

Mycoplasma – frequent in young adults , co-pathogen

# Pathogens involved in hospital-acquired pneumonia

- Staphylococcus aureus
- Escherichia coli
- Klebsiella
- Enterobacter
- Pseudomonas aeruginosa
- Proteus and other gramnegatives
- Legionella

# Pathogens involved in immune deficiency

Viruses – cytomegalovirus, herpes virus Fungi – aspergillus, cryptococcus, candida, mucor Protozoa – pneumocystis carinii, toxoplasma gondii Mycobacteria (TB, non-TB)

### Points to remember in CAP

 Many microbial agents can cause pneumonia but the clinical presentation in general does not allow an etiological diagnosis.

However, **Streptococcus pneumoniae accounts for about 50%** of all cases of CAP that require hospital admisssion.

Atypical microbes – co-pathogens

• Each microbe can results in an illness that spans the spectrum from mild to life threatening.

### CAP – Goals of Therapy

- To assess the severity of the pneumonia as a guide to decision on the appropriate location of treatment (*i.e.*, home, hospital ward or intensive care unit)
- 2. To relieve symptoms (fever, cough, pleuritic chest pain, sputum production, dyspnea)
- 3. To treat the infection
- To promptly recognize and minimize complications: metastatic infection (meningitis, purulent pericarditis, endocarditis, osteomyelitis)

## **Antibiotics**

• Patients pressenting to an emergency room with pneumonia should receive antimicrobial therapy as soon as possible!

### **INITIAL EMPIRIC THERAPY !**

- **Macrolides:** erythromycin, clarithromycin, azithromycin...
- Cephalosporins: cefotaxime, ceftriaxone, ceftazidime...
- Beta lactams/lactamase inhibitors: amoxycillin-clavulanat...
- Fluoroquinolones: levofloxacin, ciprofloxacin ...
- Antipseudomonade: imipenem, meropenem...
- Antistaphylococci: oxacillin...

## Initial Management of CAP ATS, BTS, ERS ...guidelines

Severity of illnes score



#### 91 points **Treat in hospital ICU** Ward Levofloxacin or shock; assisted vent. IV levofloxacin plus 2nd or 3rd beta lactams generation cephalosporin or IV beta lactam plus plus macrolide plus aminoglycoside macrolide Combination of antibiotics

To cover intracellular pathogens: macrolides or quinolones !!!

## Complications

- empyema
- cavitation
- pneumothorax
- septic shock
- respiratory failure
- worsening of comorbid conditions (e.g., ischemic heart disease, diabetes mellitus)
- adverse drug reactions (common: allergies, impairment of renal or liver function ...)



### Lobar pneumonia *versus* bronchopneumonia

- Lobar pneumonia rare nowadays
- Associated with very severe condition
- Intraalveolar inflammation

Neutrophils in alveoli



- Physical findings typical for condensation of lung parenchyma:
  - percussion sound shortened
  - bronchial breathing above the affected lobe/-s

- "crepitus indux and crepitus redux" – crackles and rales present initially and then re-occur before recovery

• X-Ray: homogenous condensation/infiltration of the whole lung lobe



## Viral pneumonias

<u>Virus infections</u> of the respiratory tract – most common acute infection worldwide with a wide variety of affected site and severity (varies from common cold to pneumonia)

Clinically important viruses

- 1. Influenza virus (A, B)
- 2. RS virus
- 3. Adenovirus
- 4. Parainfluenza virus
- 5. Herpes family (varicella-zoster virus, cytomegalovirus)
- 6. Coronavirus

## Viral pneumonias

### **Imaging features**

CXR – markedly bilateral infiltrates with interstitial involvement and dominantly affecting lower parts of lungs

- CT alveolar affections (ground-glass opacities)
  - interstitial affections (fibrosis)
- DDX: pneumonias of other aethiology
  - idiopathic (non-infectious) interstitial lung diseases
  - lung congestion in heart failure, uremic lung
  - malignancy (lymphangoitis carcinomatosa)
  - bronchiectasis

## Viral pneumonias

<u>Physical examination</u> bilateral inspiratory non-accentual crackles and crepitations,  $\uparrow$  fremitus pectoralis

### Lab. diagnosis

- Cytology (BAL fluid, secretions, lung tissue biopsy) DNA viruses - intranuclear inclusion bodies RNA viruses - cytoplasmic inclusion bodies
- 2. Serology EIA
- 3. Cultures protein-rich medium
- 4. Antigen detection: direct or indirect immunofluorescence, ELISA
- 5. Genetic amplification methods:
  - PCR (frequently first choice), high sensitivity and specificity



## **COVID-19 pneumonia**



- Infection by a coronavirus SARS-CoV2
- CT scan extensive bilateral ground glass opacities combined with dense condensates
- Microbiology PCR tests nasopharyngeal swab or bronchoalveolar lavage fluid
- Progression of respiratory distress, ARDS requires mechanical ventilation applied preferably <u>in prone position</u>
- No specific antivirotic treatment available, experimental administration of hydroxychloroquin, antiretroviral drugs (for HIV)
- Bacterial super-infection and sepsis broad-spectre ATB

### Nosocomial Pneumonia – HAP

- Definition: infection that occurs 48 to 72 hours following admission to hospital and one that is not incubating at the time of admission
- increase in length of hospital stay
- the hospital—acqured infection that is most likely to result in a fatal outcome
- mortality 33-50%
- mortaligy higher in patients who are bacteremic or who are infected with particulary virulent pathogens (*Pseudomonas aeruginosa, Klebsiella, Acinetobacter, E. coli, Proteus ...*)

### **Predisposing factors**

1. Prolonged hospitalization

- 2. Underlying comorbid disease
- 3. Compromised host defenses
- 4. Recent antibiotic therapy
- 5. Aspiration

Anaerobes normally found in the oropharynx are the usual cause of aspiration pneumonia.

### Ventilator-associated pneumonia - VAP

- Prospective cohort studies incidence of VAP: 10-65%
- Patients at highest risk:
  - COPD
  - Burns
  - Neurosurgical illness
  - ARDS
  - Reintubation
  - Witnessed aspiration
  - Receiving paralytic agents, or continuous enteral nutrition

### Ventilator-associated pneumonia

- Early 4 7 days of onset of mechanical ventilation
  - easily treated organisms (Streptococcus pneumoniae, Haemophilus influenzae, Staphylococcus aureus)
- Late after 7 days of ventilation
  - difficult-to-treat organisms (Pseudomonas species, Acinetobacter)

### Nosocomial pneumonia - HAP Pseudomonas aeruginosa



## HAP – VAP : diagnosis

- **Clinical approach**: careful history, clinical examination, chest x-ray, sputum and blood cultures
- Invasive/quantitative methods: bronchoscopis techniques protected specimen brush, bronchoalveolar lavage, deep suction aspirates in patients who are mechanically ventilated
- Even in tertiary level university centres using multiple approaches, <u>an etiologic pathogen may not be found in over</u> <u>one half-cases</u>
- Invasive methods do not appear to alter mortality in severe cases

## Pulmonary infections in HIV (AIDS)

• Immunocompromised patients are *extremely susceptible* to the development of respiratory tract infections with a variety of organisms, some of which rarely cause disease in the immunocompetent host.

#### Bacteria

- Gram-positive cocci, specially Staphylococcus
- Gram-negative bacilli
  - Mycobacterium tuberculosis
  - Atypical mycobacteria
  - Nocardia



- Viruses
- Cytomegalovirus
- Herpesvirus

- Fungi
- Aspergillus (invasive pneumonia)
- Cryptococcus
- Candida
- Mucor
- Protozoa
- Pneumocystis carinii
- Toxoplasma gondii (rare)

### Pneumocystic carinii pneumonia in HIV

- In patients with AIDS, often has an indolent onset
- Diagnosis is made most commonly on samples obtained by induction of sputum or bronchoalveolar lavage
- Symptoms: dyspnea, fever, hypoxemia
- Chest radiograph: frequently *diffuse* alveolar infiltrates
- Standard therapy:
  - 1.Trimethoprim sulfamethoxazole (21 days)
  - 2. Trimetoprim dapsone
  - 3. Pentamidine (atypical presentations in patients receiving aerolized pentamidine)

### Viral infections in AIDS

- The most common virus Cytomegalovirus (CMV, herpesvirus family)
- The most common site eye (CMV retinitis) and gastrointerestinal tract
- Frequently found in cultures from lung tissue or bronchoalveolar fluid, almost always with the coexistent Pneumocystis that is thought to be the primary pathogen

# Mycobacterial infections in patients with AIDS

- 1. Tuberculosis may be an **early opportunistic** infection
- 2. In the late stage of the disease, the clinical manifestation of tuberculosis is often atypical: upper lobe cavitary less frequent, disseminated disease more frequent
- The other species that frequently causes opportunistic infection in AIDS is Mycobacterium avium-intracellulare, often with disseminated disease