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Preface

Preface

This is a supporting text for the undergraduate students interested in quan-
tum theory of magnetism. The text represents an introduction to various
theoretical approaches used in this field. It is an open material, in the sense
that it will be supported by appropriate problems to be solved by student
at seminars and also as a homework.

The text consists of four chapters that form closed themes of the in-
troductory quantum theory of magnetism. In the first part we explain the
quantum origin of the magnetism illustrating the appearance of the ex-
change interaction for the case of hydrogen molecule. The second chapter is
devoted to the application of the Bogolyubov inequality to the Heisenberg
model and it represents the part which is usually missing in the textbooks
of magnetism. The third chapter deals with the standard spin wave-theory
including the Bloch and Holstein-Primakoff a approach. Finally, we discuss
the application of the Jordan-Wigner transformation to one-dimensional
spin-1/2 XY model.

The primary ambition of this supportive text is to explain diverse math-
ematical methods and their applications in the quantum theory of mag-
netism. The text is written in the form which should be sufficient to de-
velop the skills of the students up to the very high level. In fact, it is
expected that students following this course will able to make their own
original applications of the methods presented in this book.

The reading and understanding this text requires relevant knowledges
from the mathematics, quantum and statistical mechanics, and also from
the theory of phase transitions. It is also expected that students are familiar
with computational physics, programming and numerical mathematics that
are necessary to solve the problems that will be included in the MOODLE
educational environment of the P.J. Šafárik University in Košice.

Finally one should note that the text is mathematically and physically
rather advanced and its understanding assumes supplementary study of the
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Preface

books listed in the list of references.

Košice, September 2013, Michal Jaščur.
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Chapter 1

Many-Body Systems

1.1 Systems of Identical Particles

Magnetism is a many-body phenomenon and its origin can only be explained
within the quantum physics. In this part we will investigate some impor-
tant properties of the wavefunctions of quantum systems consisting of many
identical particles that are important to understand magnetic properties in
the solid state. In general, the Hamiltonian of the many-body system de-
pends on the time, coordinates and spin variables of all particles. However,
in this part we will mainly investigate the symmetry properties of the wave-
function that are independent on the time and therefore we can exclude
the time from our discussion. For simplicity we neglect also spin-degrees of
freedom.

Let us consider a system of N identical particles described by the many-
body Hamiltonian Ĥ(r1, r2, . . . , rN , ) which remains unchanged with respect
to the transposition of arbitrary two particles in the system. This fact can
be mathematically expressed as

Ĥ(r1, r2, . . . , rj, . . . , rk, . . . , rN) = Ĥ(r1, r2, . . . , rk, . . . , rj, . . . , rN) (1.1)
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1.1 Systems of Identical Particles

or

P̂jkĤ(r1, r2, . . . , rj, . . . , rk, . . . , rN) = Ĥ(r1, r2, . . . , rk, . . . , rj, . . . , rN)P̂jk.

(1.2)

The previous equation defines the transposition operator P̂jk of the jth and
kth particle. Since a mutual interchange of arbitrary particles in the system
does not change its state, then the total wavefunction of the system obeys
the following relation

P̂jkΨ(r1, r2, . . . , rj, . . . , rk, . . . , rN) = eiαΨ(r1, r2, . . . , rk, . . . , rj, . . . , rN)

(1.3)

and

P̂2
jkΨ(r1, r2, . . . , rj, . . . , rk, . . . , rN , t) = e2iαΨ(r1, r2, . . . , rj, . . . , rk, . . . , rN),

(1.4)

where the real parameter α apparently satisfies equation

e2iα = 1 or eiα = ±1. (1.5)

The last equation implies that the total wavefunction either remains the
same, or changes its sign when two arbitrary particles are interchanged in
the system. In the first case, the total wave function is called as a symmetric
function and in the later one as an anti-symmetric function. The symme-
try of the wavefunction of an ensemble of identical particles is exclusively
given by the type of particles and does not depend on external conditions.
In fact, it has been found that all particles obeying the Pauli exclusion
principle have the antisymmetric wavefunction and all other particles have
the symmetric wavefunction. Unfortunately, the direct theoretical proof of
this statement is impossible for strongly interacting particles, since in real
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1.1 Systems of Identical Particles

many-body systems is not possible to calculate exactly the total wavefunc-
tion. On the other hand, the situation becomes tractable for the case of
non-interacting or weakly interacting particle. Therefore we at first will in-
vestigate the system of spinless non-interacting identical particles and then
we clarify the role of the interaction and spin.

In the case of noninteracting particles the total Hamiltonian of the sys-
tem can be expressed as a sum of single-particle Hamiltonians, i.e.

Ĥ =
N∑
j

Ĥj, (1.6)

where N denotes the number if particles. It is also well known that the
total wavefunction of non-interacting particles can be written as a product
of the single-particle wavefunctions, namely,

Ψ(r1, r2, . . . , rj, . . . , rk, . . . , rN) =
N∏
j=1

ϕnj
(rj), (1.7)

where nj represents the set of all quantum numbers characterizing the rele-
vant quantum state of the jth particle. The single-particle functions ϕnj

(rj)
are of course the solutions of the stationary Schrodinger equation

Ĥjϕnj
(rj) = εnj

ϕnj
(rj). (1.8)

Here εnj
denote the eigenvalues of the single-particle Hamiltonian Ĥj, so

that the eigenvalue of the total Hamiltonian is given by En1,n2...,nN
=

∑
j εnj

.
The symmetric wavefunction describing whole system can be written in the
form

Ψ(r1, r2, . . . , rj, . . . , rk, . . . , rN) = A
∑
P

ϕn1(r1)ϕn2(r2) . . . ϕnN
(rN), (1.9)
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1.2 Heitler-London Theory of Direct Exchange

where A denotes the normalization constant and summation is performed
over all possible permutation of the particles. Similarly for the antisymmet-
ric case we obtain the form

Ψ(r1, r2, . . . , rj, . . . , rk, . . . , rN) =
1√
N !

∣∣∣∣∣∣∣∣∣
ϕn1(r1) ϕn1(r2) . . . ϕn1(rN)
ϕn2(r1) ϕn2(r2) . . . ϕn2(rN)
...

...
...

ϕnN
(r1) ϕnN

(r2) . . . ϕnN
(rN)

∣∣∣∣∣∣∣∣∣
(1.10)

which is usually called as the Slater determinant. It is clear, that inter-
changing of two particles in the system corresponds to the interchange of
relevant rows in the determinant (1.10), which naturally leads to the sign
change of the wavefunction. Moreover, if two or more particles occupy the
same state, then two or more rows in the determinant (1.10) are equal and
consequently, the resulting wavefunction is equal to zero in agreement with
the Pauli exclusion principle.

Until now, we have considered a simplified system of non-interacting par-
ticles and we have completely neglected spin degrees of freedom. However,
the situation in realistic experimental systems is much more complicated,
since each particle has a spin and moreover, the interactions between parti-
cles often also substantially influence the behavior of the system. However,
if we assume the case of weak interactions and if we neglect the spin-orbit
interactions then the main findings discussed above remain valid and more-
over, the existence of the exchange interaction can be clearly demonstrated.
Instead of developing an abstract and general theory for such a case, it
is much more useful to study a typical realistic example of the hydrogen
molecule, which illustrates principal physical mechanisms leading to the
appearance of magnetism.
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1.2 Heitler-London Theory of Direct Exchange

1.2 Heitler-London Theory of Direct Exchange

In the previous part, we have found that the total wavefunction of the
many-electron system must be anti-symmetric. In this subsection, we will
demonstrate that the use of anti-symmetric wave functions leads to the
purely quantum contribution to the energy of the system, which is called
the exchange energy. In fact, this energy initiates a certain ordering of
the spins, i.e. it may lead to the magnetic order in the system. A similar
effect we also obtain using the single-product wavefunctions, if we explicitly
include the exchange-interaction term into Hamiltonian. This effect was
independently found by Heisenberg and Dirac in 1926 and it represent the
modern quantum-mechanical basis for understanding magnetic properties
in many real systems.

a b
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r

r
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r r

r
a
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21
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Figure 1.1: Schematic geometry of the H2 molecule. The larger circles denote
the protons and the smaller ones represent two electrons. The relevant distances
between different pairs of particles are denoted as rij, where i, j = a, b, 1, 2

We start our analysis with one of the simplest possible system, namely,
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1.2 Heitler-London Theory of Direct Exchange

H2 molecule. In the hydrogen molecule two electrons interact with each
other and with the nuclei of the atoms. The situation is schematically
depicted in Fig.1.1 and considering this geometry we can write the Hamil-
tonian of the H2 molecule in the form

Ĥ = Ĥ1 + Ĥ2 + Ŵ + ĤLS (1.11)

where

Ĥ1 = − ~2

2m
∆1 −

e20
ra1

(1.12)

Ĥ2 = − ~2

2m
∆2 −

e20
rb2

(1.13)

Ŵ =
e20
rab

+
e20
r12

− e20
rb1

− e20
ra2

(1.14)

and we have used the abbreviation e0 = e/(4πε0). The terms Ĥ1 and Ĥ2 in
(1.11) describe the situation when the two hydrogen atoms are isolated. The
operator Ŵ describes the interaction between two cores, electrons, as well
as between electrons and relevant nuclei. Finally, the last term represents
the spin-orbit interaction, which is assumed to be small so that we can
separate the orbital and spin degrees of freedom. To solve the problem of the
hydrogen molecule, we apply the first-order perturbation theory neglecting
the spin-orbit coupling and taking the term Ŵ as a small perturbation.
As it is usual in the perturbation theory, we at first solve the unperturbed
problem, i.e. the system of two non-interacting hydrogen atoms. Thus, we
have to solve the Schrodinger equation

(Ĥ1 + Ĥ2)Ψ = U0Ψ (1.15)
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1.2 Heitler-London Theory of Direct Exchange

As we already have noted above, we will assume that the total wave function
can be written as a product of the orbital and spin functions, i.e. Ψ =
φ(r1, r2)χ(s

z
1, s

z
2). Another very important point to be emphasized here

is that our simplified Hamiltonian does not explicitly depend on the spin
variables. Consequently, we can at first evaluate only the problem with
orbital functions and at the end of the calculation we can multiply the
result by an appropriate spin function to ensure the anti-symmetry of the
total wavefunction. In order to express this situation mathematically, we
introduce the following notations

• ϕα(ri),where α = a, b, i = 1, 2 represents the orbital wave func-
tion of the isolated hydrogen atom when the ith electron is localized
closely to the αth nucleus

• ξγ(i),where γ =↑, ↓, i = 1, 2 is the spin function describing the
spin up or spin down of the ith electron

Now, let us proceed with the discussion of the orbital functions of the system
described by Eq.(1.15). Since the orbital functions ϕα(ri) are eigenfunctions
of the relevant one-atom Schrodinger equation with the same eigenvalue
E0 = −13.55 eV , it is clear that the ground state of the two noninteracting
hydrogen atoms has the energy U0 = 2E0 and it is doubly degenerated.
This is so-called exchange degeneracy and two wavefunctions corresponding
to this U0 can be expressed as φ1(r1, r2) = ϕa(r1)ϕb(r2) and φ2(r1, r2) =
ϕa(r2)ϕb(r1).

If we include into Hamiltonian also the interaction term Ŵ then the sit-
uation becomes much more complex and the eigenfunctions and eigenvalues
cannot be found exactly. In the spirit of the perturbation theory, we will
assume that the wavefunction of the interacting system can be expressed in
the form

φ(r1, r2) = c1φ1(r1, r2) + c2φ2(r1, r2)

= c1ϕa(r1)ϕb(r2) + c2ϕa(r2)ϕb(r1) (1.16)
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1.2 Heitler-London Theory of Direct Exchange

where c1 and c2 are the constant that will be determined later. The system
is now described by the following Schrodinger equation(
Ĥ1 + Ĥ2 + Ŵ

)[
c1φ1(r1, r2) + c2φ2(r1, r2

]
= E

[
c1φ1(r1, r2) + c2φ2(r1, r2)

]
(1.17)

Multiplying the previous equation by φ∗
1(r1, r2) and integrating over the

space one obtains

2c1E0 + 2c2E0

∫∫
φ∗
1(r1, r2)φ2(r1, r2)dV1dV2

+ 2c1

∫∫
φ∗
1(r1, r2)Ŵφ1(r1, r2)dV1dV2 + c2

∫∫
φ∗
1(r1, r2)Ŵφ2(r1, r2)dV1dV2

= c1E + c2E

∫∫
φ∗
1(r1, r2)φ2(r1, r2)dV1dV2. (1.18)

Similarly, by multiplying Eq.(1.17) by φ∗
2(r1, r2) and integrating over the

space one finds

c1E0

∫∫
φ∗
2(r1, r2)φ1(r1, r2)dV1dV2 + c1

∫∫
φ∗
2(r1, r2)Ŵφ1(r1, r2)dV1dV2

+ 2c2E0 + c2

∫∫
φ∗
2(r1, r2)Ŵφ2(r1, r2)dV1dV2

= c1E

∫∫
φ∗
2(r1, r2)φ1(r1, r2)dV1dV2 + c2E. (1.19)

Here one should notice that in deriving Eqs.(1.18) and (1.19) we have used
normalization conditions for φ1 and φ2.

In order to express two previous equations in an abbreviated form one
introduces the following quantities:

1. The overlap integral

S0 =

∫
ϕ∗
a(ri)ϕb(ri)dVi i = 1, 2 (1.20)
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1.2 Heitler-London Theory of Direct Exchange

2. The Coulomb integral

K =

∫∫
φ∗
1(r1, r2)Ŵφ1(r1, r2)dV1dV2 =

∫∫
φ∗
2(r1, r2)Ŵφ2(r1, r2)dV1dV2

(1.21)

3. The exchange integral

A =

∫∫
φ∗
1(r1, r2)Ŵφ2(r1, r2)dV1dV2 =

∫∫
φ∗
2(r1, r2)Ŵφ1(r1, r2)dV1dV2

(1.22)

Applying this notation we rewrite Eqs.(1.18) and (1.19) in the form

c1(2E0 +K − E) + c2(2E0S
2
0 + A− ES2

0) = 0

c1(2E0S
2
0 + A− ES2

0) + c2(2E0 +K − E) = 0 (1.23)

This is a homogeneous set of equations which determines unknown coeffi-
cients c1 and c2. Of course, we search for non-trivial solutions that can be
naturally determined from the equation∣∣∣∣ 2E0 +K − E 2E0S

2
0 + A− ES2

0

2E0S
2
0 + A− ES2

0 2E0 +K − E

∣∣∣∣ = 0. (1.24)

From this equation we easily find two possible solutions for the energy E
and the coefficients ci, namely,

Ea = 2E0 +
K − A

1− S2
0

, c1 = −c2 (1.25)

and

Es = 2E0 +
K + A

1 + S2
0

, c1 = c2 (1.26)

15



1.2 Heitler-London Theory of Direct Exchange

Finally, from the normalization condition of the total wavefunction one
obtains

1 =

∫ ∫
φ∗(r1, r2)φ(r1, r2)dV1dV2

= 2|c1|2(1∓ S2) (1.27)

or

c1 =
1√

2(1∓ S2
0)
, (1.28)

where the − and + sign corresponds to Ea and Es, respectively. Using
(1.28) we can express the orbital part of the total wavefunctions as

φ(r1, r2) =
1√

2(1− S2
0)

[
ϕa(r1)ϕb(r2)− ϕa(r2)ϕb(r1)

]
(1.29)

which is clearly the anti-symmetric expression and it corresponds to Ea.
Similarly, the symmetric orbital function which corresponds to Es is given
by

φ(r1, r2) =
1√

2(1 + S2
0)

[
ϕa(r1)ϕb(r2) + ϕa(r2)ϕb(r1)

]
. (1.30)

Finally, we also can account for the spins of the electrons and to con-
struct the following anti-symmetric wavefunctions:

Ψ =
1√

2(1− S2
0)

∣∣∣∣ ϕa(r1) ϕa(r2)
ϕb(r1) ϕb(r2)

∣∣∣∣ ξ↑(1)ξ↑(2), S = 1, Sz = 1 (1.31)

Ψ =
1√

2(1− S2
0)

∣∣∣∣ ϕa(r1) ϕa(r2)
ϕb(r1) ϕb(r2)

∣∣∣∣ ξ↓(1)ξ↓(2), S = 1, Sz = 0 (1.32)
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1.2 Heitler-London Theory of Direct Exchange

Ψ =
1√

2(1− S2
0)

∣∣∣∣ ϕa(r1) ϕa(r2)
ϕb(r1) ϕb(r2)

∣∣∣∣ 1√
2
[ξ↑(1)ξ↓(2) + ξ↓(1)ξ↑(2)]

S = 1, Sz = −1 (1.33)

and

Ψ =
1√

2(1 + S2
0)

[
ϕa(r1)ϕb(r2) + ϕb(r1)ϕa(r2)

] 1√
2

∣∣∣∣ ξ↑(1) ξ↑(2)
ξ↓(1) ξ↑(2)

∣∣∣∣
S = 0, Sz = 0 (1.34)

Here the wavefunctions (1.31)-(1.33) form a triplet (threefold degenerate
state) with the energy Ea, the total spin S = 1 and the total zth component
Sz = ±1, 0. Similarly, the wavefunction (1.34) describes a singlet state with
energy Es, the total spin S = 0 and Sz = 0. Of course, both the triplet and
singlet states can be the ground state of the system depending on the sign
of the exchange integral. In order to prove this statement, we calculate the
energy difference between Ea and Es, i.e.,

∆E = Ea − Es =
2(KS2

0 − A)

1− S4
0

≈ −2A, (1.35)

where we have neglected the overlap integral which very small in comparison
with other terms in the expression. It is clear from the previous equation
that for A > 0 the ground state of the system will be represented by the
triplet state with parallel alignment of spins and for A < 0 the singlet state
with anti-parallel orientation of the spins. Of course, the parallel (anti-
parallel) spin orientation implies also parallel (anti-parallel) alignment of the
magnetic moments, which is crucial for the observation of the ferromagnetic
or antiferromagnetic ordering in the real systems.

The situation in the hydrogen molecule, of course, differs from the real
situation in ionic crystal in many respects. For example, the electrons in
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1.2 Heitler-London Theory of Direct Exchange

the hydrogen molecule occupy 1s orbitals, while in the ionic crystals the
unpaired localized electrons usually occupy d or f orbitals. In fact, the
calculation of the exchange integral using 3d orbital functions leads to the
positive value of the A. Therefore, the direct exchange interactions leads
to the ferromagnetic ordering in such systems. Later it was discovered by
Anderson, that the antiferromagnetic ordering is caused by so-called indi-
rect exchange interaction via a non-magnetic bridging atom. The situation
in real materials is usually much more complicated and other mechanism
such as the Dzyaloshinkii-Moriya or Ruderman-Kittel-Kasuya-Yosida inter-
actions can play an important role.

Although the calculation performed for the hydrogen molecule does not
reflect the complex situation of the real magnetic systems, it is extremely
important from the methodological point of view. In fact, it is clear from our
calculation, that the parallel or anti-parallel alignment of the magnetic mo-
ments appears due to new contribution to the energy of the system which
originates from the indistinguishability of quantum particles. The other
mechanisms leading to the macroscopic magnetism have also quantum na-
ture and cannot be included into the classical theory.

Thus we can conclude that the physical origin of magnetism can be
correctly understood and described only within the quantum theory.

18



Chapter 2

Bogolyubov Inequality and Its
Applications

2.1 General Remarks on Bogolyubov Inequal-

ity

The Bogolyubov inequality for the Gibbs free energy G of an interacting
many-body system described by the Hamiltonian Ĥ is usually written in
the form

G ≤ G0 + ⟨Ĥ − Ĥ0⟩0 = ϕ(λx, λy, λz, . . . ). (2.1)

In this equation, the so-called trial Hamiltonian Ĥ0 = Ĥ0(λx, λy, λz, . . . )
depends on some variational parameters λi that are naturally determined
in the process of calculation and the symbol ⟨. . . ⟩0 stands for the usual
ensemble average calculated with the trial Hamiltonian. Finally, G0 denotes
the Gibbs free energy of the trial system defined by

G0 = G0(λx, λy, λz, . . . ) = − 1

β
lnZ0. (2.2)

19



2.2 Mean-Field Theory of Anisotropic Heisenberg Model

where β = 1/kBT and the the partition function Z0 is given by

Z0 = Tr e−βĤ0 (2.3)

In general, there is a remarkable freedom in defining the trial Hamilto-
nian. In fact, the only limitations to be taken into account follow from the
two obvious requirements:

1. The trial Hamiltonian should naturally represent a simplified physical
model of the real system.

2. The expression of G0 must be calculated exactly, in order to obtain a
closed-form formula for the r.h.s of Eqs.(2.1).

2.2 Mean-Field Theory of the Spin-1/2

Anisotropic Heisenberg Model

2.2.1 General Formulation

The accurate theoretical analysis of the Heisenberg model is extremely hard
due to interaction terms in the Hamiltonian including non-commutative spin
operators. Probably the simplest analytic theory applicable to the model
is the standard mean-field approach. Although, the mean-field theory can
mathematically be formulated in many different ways, we will develop in this
text an approach based on the Bogolyubov inequality for the free energy of
the system. The main advantage of this formulation is its completeness (we
can derive analytic formulas for all thermodynamic quantities of interest)
and a possibility of further generalizations, for example, an extension to the
Oguchi approximation.

20



2.2 Mean-Field Theory of Anisotropic Heisenberg Model

In this part we will study the spin-1/2 anisotropic Heisenberg model on
a crystal lattice described by the Hamiltonian

Ĥ = −
∑
i,j

(JxŜ
x
i Ŝ

x
j + JyŜ

y
i Ŝ

y
j + JzŜ

z
i Ŝ

z
j )− gµB

∑
i

(HxŜ
x
i +HyŜ

y
i +HzŜ

z
i )

(2.4)
where g is the Landé factor, µB is the Bohr magneton, Jα and Hα, α =
x, y, z denote the spatial components of the exchange interaction and exter-
nal magnetic field, respectively. One should note here that Jα is assumed
to be positive for the ferromagnetic systems and negative for the antifer-
romagnetic ones. Moreover, it is well-known that the absolute value of
exchange integrals very rapidly decreases with the distance, thus we can
restrict the summation in the first term of (2.4) to the nearest-neighboring
pairs of atoms on the lattice. Finally, the spatial components of the spin-1/2
operators are given by

Ŝx
k =

1

2

(
0 1
1 0

)
k

, Ŝy
k =

1

2

(
0 −i
i 0

)
k

, Ŝz
k =

1

2

(
1 0
0 −1

)
k

. (2.5)

To proceed further we choose the trial Hamiltonian in the form

Ĥ0 = −
N∑
k

(
λxŜ

x
k + λyŜ

y
k + λzŜ

z
k

)
, (2.6)

where N denotes the total number of the lattice sites and λi are variational
parameters to be determined be minimizing of the r.h.s. of the Bogolyubov
inequality. After substituting (2.5) into (2.6), we can apparently rewrite
previous equation as follows

Ĥ0 =
N∑
k=1

Ĥ0k, (2.7)
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2.2 Mean-Field Theory of Anisotropic Heisenberg Model

where the site Hamiltonian Ĥ0k is given by

Ĥ0k = −1

2

(
λz λx − iλy

λx + iλy −λz

)
k

. (2.8)

In order to evaluate the terms entering the Bogolyubov inequality, we at
first have to calculate the partition function Z0. Taking into account the
commutation relation [Ĥ0k, Ĥ0ℓ] = 0 for k ̸= ℓ, we obtain the following
expression

Z0 = Tr exp
(
−β

N∑
k=1

Ĥ0k

)
=

N∏
k=1

Trk exp
(
−βĤ0k

)
, (2.9)

where Trk denotes the trace of the relevant operator related to kth lattice
site. Now, after setting Eq.(2.8) into (2.9) one obtains

Z0 =
N∏
k=1

Trk exp

(
β
2
λz

β
2
(λx − iλy)

β
2
(λx + iλy) −β

2
λz

)
k

.

=

[
Trk exp

(
β
2
λz

β
2
(λx − iλy)

β
2
(λx + iλy) −β

2
λz

)
k

]N

. (2.10)

The crucial point for further calculation is the evaluation of exponential
function in previous equation. Let us note that in performing this task, we
will not follow the usual approach based on the diagonalization of modified
matrix (2.8) entering the argument of exponential. Instead, we will perform
all calculations in the real space by applying the following matrix form of
the Cauchy integral formula

e−βĤ0k =
1

2πi

∮
C

ezdz

zI − (−βĤ0k)
. (2.11)
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After a straightforward calculation we obtain

e−βĤ0k =

(
h11 h12

h21 h22

)
(2.12)

with

h11 = cosh

(
β

2
Λ

)
+

λz

Λ
sinh

(
β

2
Λ

)
(2.13)

h12 =
λx − iλy

Λ
sinh

(
β

2
Λ

)
(2.14)

h21 =
λx + iλy

Λ
sinh

(
β

2
Λ

)
(2.15)

h22 = cosh

(
β

2
Λ

)
− λz

Λ
sinh

(
β

2
Λ

)
, (2.16)

where we have introduced the parameter

Λ =
√
λ2
x + λ2

y + λ2
z. (2.17)

Using previous equations we easily obtain the following expressions for Z0

and G0

Z0 =

[
2 cosh

(
β

2
Λ

)]N
(2.18)

G0 = −N

β
ln

[
2 cosh

(β
2
Λ

)]
. (2.19)
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To obtain the complete expression for ϕ(λx, λy, λz, . . . ), we have to eval-

uate the terms ⟨Ĥ⟩0 and ⟨Ĥ0⟩0 that can be expressed as

⟨Ĥ⟩0 = −Nq

2

(
Jx⟨Ŝx

i Ŝ
x
j ⟩0 + Jy⟨Ŝy

i Ŝ
y
j ⟩0 + Jz⟨Ŝz

i Ŝ
z
j ⟩0

)
− N

(
hx⟨Ŝx

j ⟩0 + hy⟨Ŝy
j ⟩0 + hz⟨Ŝz

j ⟩0
)
, (2.20)

where q denotes the coordination number of the lattice and hα = gµBHα,
(α = x, y, z). Similarly, we have

⟨Ĥ0⟩0 = −N
(
λx⟨Ŝx

j ⟩0 + λy⟨Ŝy
j ⟩0 + λz⟨Ŝz

j ⟩0
)
. (2.21)

The ensemble averages of ⟨Ŝα
j ⟩0 entering two previous equations can be

expressed in the form

⟨Ŝα
j ⟩0 =

1

Z0

TrŜα
j e

−βĤ0

=
TrjŜ

α
j exp

(
−βĤ0j

)∏N−1
k ̸=j Trk exp

(
−βĤ0k

)
Trj exp

(
−βĤ0j

)∏N−1
k ̸=j Trk exp

(
−βĤ0k

) (2.22)

which can be simplified as follows

⟨Ŝα
j ⟩0 =

TrjŜ
α
j exp

(
−βĤ0j

)
Trj exp

(
−βĤ0j

) . (2.23)

Similarly, one easily finds that

⟨Ŝα
i Ŝ

α
j ⟩0 =

TriŜ
α
i exp

(
−βĤ0i

)
Tri exp

(
−βĤ0i

) TrjŜ
α
j exp

(
−βĤ0j

)
Trj exp

(
−βĤ0j

) =
(
⟨Ŝα

j ⟩0
)2

. (2.24)
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In order to complete our calculation, we substitute Eqs. (2.12)-(2.16) into
Eq. (2.23) and then we evaluate the trace of relevant matrices. In this way
we obtain the following equation

⟨Ŝα
j ⟩0 =

λα

2Λ
tanh

(
β

2
Λ

)
. (2.25)

and

⟨Ŝα
i Ŝ

α
j ⟩0 =

(
λα

2Λ

)2

tanh2

(
β

2
Λ

)
. (2.26)

After introducing notation ⟨Ŝα
j ⟩0 = mα, α = x, y, z, we can rewrite the r.h.s

of the Bogolyubov inequality in the form:

ϕ(λx, λy, λz) = −N

β
ln
(
2 cosh

β

2
Λ
)
− Nq

2

(
Jxm

2
x + Jym

2
y + Jzm

2
z

)
+ N

[
(λx − hx)mx + (λy − hy)my + (λz − hz)mz

]
. (2.27)

Since the quantity ϕ represents an upper bound for the exact Gibbs free
energy of the system, then the best possible approximation (with the trial
Hamiltonian Ĥ0) corresponds for those values of λx, λy, λz that minimize
ϕ(λx, λy, λz). Relevant values of λx, λy, λz are obviously determined from
the equations

∂ϕ

∂λx

= 0,
∂ϕ

∂λy

= 0,
∂ϕ

∂λz

= 0. (2.28)

The above conditions lead to three independent equations that can be
rewritten in the following simple matrix form:

∂mx

∂λx

∂my

∂λx

∂mz

∂λx
∂mx

∂λy

∂my

∂λy

∂mz

∂λy

∂mx

∂λz

∂my

∂λz

∂mz

∂λz


λx − qJxmx − hx

λy − qJymy − hy

λz − qJzmz − hz

 = 0. (2.29)
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Since the first matrix in (2.29) is in general non-zero, then the only possible
solution of this equation is given by

λx = qJxmx + hx, λy = qJymy + hy, λz = qJzmz + hz (2.30)

and the cooresponding equilibrium Gibbs free energy can be after a small
manipulation expressed in the form

G = −N

β
ln
{
2 cosh

(βhef

2

)}
+

Nq

2

(
Jxm

2
x + Jym

2
y + Jzm

2
z

)
. (2.31)

where we have denoted

hef =
√

(qJxmx + hx)2 + (qJymy + hy)2 + (qJzmz + hz)2. (2.32)

Having obtained the last equation, we are able to identify the physical
meaning of the parameters mx,my,mx and consequently also the meaning
of variational parameters λx, λy, λz.

For this purpose, we at first recall that the spatial component of the
total magnetization Mα is defined as

Mα = −
(

∂G
∂Hα

)
β

= −gµB

(
∂G
∂hα

)
β

. (2.33)

After a straightforward calculation we obtain the following very simple ex-
pressions

Mx

NgµB

= mx = ⟨Ŝx
j ⟩0,

My

NgµB

= my = ⟨Ŝy
j ⟩0,

Mz

NgµB

= mz = ⟨Ŝz
j ⟩0,

(2.34)

which clearly indicate that mα represents the spatial components of the
magnetization. Consequently, the parameters λα have the meaning of of
the molecular-field components acting on one atom in the lattice. Thus
our formulation is nothing but the standard mean-field theory. The main
advantage of our approach is that this formulation provides a close-form an-
alytical expression for the Gibbs free energy which is of principal importance
for finding stability conditions of various physical quantities.
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2.2.2 Thermodynamic Properties of the Heisenberg
Model

Now let us proceed with the calculation of several interesting physical quan-
tities for the system under investigation. Using Eqs. (2.22), (2.30) and
(2.34) one simply obtains for the components of reduced magnetization a
set of three coupled equations, namely,

mx =
qJxmx + hx

2hef

tanh

(
β

2
hef

)
, (2.35)

my =
qJymy + hy

2hef

tanh

(
β

2
hef

)
, (2.36)

mz =
qJzmz + hz

2hef

tanh

(
β

2
hef

)
, (2.37)

where we have denoted
In order to investigate the long-range ordering the systems, we set hx =

hy = hz = 0 and obtain

mx =
Jxmx

2h0

tanh

(
βq

2
h0

)
, (2.38)

my =
Jymy

2h0

tanh

(
βq

2
h0

)
, (2.39)

mz =
Jzmz

2h0

tanh

(
βq

2
h0

)
, (2.40)
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with

h0 =
√
(Jxmx)2 + (Jymy)2 + (Jzmz)2. (2.41)

These three nonlinear equations have always the trivial solution mx =
my = mz = 0 corresponding to the disordered paramagnetic phase (DP).
Moreover, depending on the temperature and the values of exchange pa-
rameters there also exist non-trivial solutions corresponding to ordered fer-
romagnetic phase (OP). The stability of the relevant solutions is then de-
termined by the minimum of the Gibbs free energy given by Eq.(2.31). Now
we briefly analyze possible trivial and non-trivial solutions of (2.38)-(2.40)
for some particular cases of the exchange interactions:

1. Ising model Jx = Jy = 0, Jz = J ̸= 0

mx = my = 0 and mz =
1

2
tanh

(qβJ
2

mz

)
for T < Tc

mx = my = mz = 0 for T > Tc (2.42)

2. Isotropic XY model Jx = Jy = J ̸= 0, Jz = 0

mz = 0,my = mx and mx =
1

2
√
2
tanh

(√2qβJ

2
mx

)
for T < Tc

mx = my = mz = 0 for T > Tc (2.43)

3. Isotropic Heisenberg model Jx = Jy = Jz ̸= 0

my = mx = mz and mz =
1

2
√
3
tanh

(√3qβJx
2

mx

)
for T < Tc

mx = my = mz = 0 for T > Tc (2.44)
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Here one should note that non-trivial results for isotropic XY and Heisen-
berg model model represents valid solution for the models when the axis of
quantization is given by the equation y = x = t, t ∈ R for the XY model
and y = x = z = t, t ∈ R for the Heisenberg model. On the other hand,
if choose as a quantization axis for example the x axis, then we obtain for
both models identical result as that for the Ising one. Thus one can conclude
that mean-field theory is not able to describe correctly quantum features
of localized spin models. In order to illustrate the numerical accuracy of
the method, we have compared in Fig. 2.3 the temperature variation of the
mean-field magnetization with exact result on the square lattice with q = 4.

0.0 0.5 1.0 1.5
0.00

0.25

0.50
q = 4

m

kBT / J

 Exact 

MFT

Figure 2.1: Comparisom of the temperature dependence of magnetization for
the Ising model on a square lattice.

The critical (or Curie) temperature is defined as a temperature at which
the long-range order (or magnetization) vanishes. In order to determine the
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2.2 Mean-Field Theory of Anisotropic Heisenberg Model

Curie temperature, we take into account that tanh(x) ≈ x for x << 1 and
obtain an universal solution

Tc =
qJα

4kB
, α = x, y, z (2.45)

which valid for all three cases mentioned above. Of course, the critical tem-
perature should be different depending on the model considered. Thus the
present method is not able to distinguish specific features of the models as
long as concerns the critical behavior. Moreover, it is also clear that the
topology of the lattice is taken into account only through its coordination
number, that is also weak point of the present method. It is well known
that this approach significantly fails for the low-dimensional systems, nev-
ertheless it gives rather good qualitative picture for the three-dimensional
systems and therefore it is frequently used to obtain analytical results, par-
ticularly, for complex systems.

Finally, one should note that calculations of other thermodynamic quan-
tities is easy and straightforward, since we have analytical solution for the
Gibbs free energy of the system from which other quantities are easily ob-
tained.

This calculation including numerical analysis and discussion is left for
the readers as an appropriate exercise.

Let us conclude this part by noticing that the present approach can be
extended to case of the the so-called Oguchi approximation which already
account much better for the quantum effects as well as for the spin-spin
correlations. Possible extensions are rather involved and require lengthy
calculations that are beyond the scope of the present book.
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Chapter 3

Spin-Wave Theory

3.1 Bloch Spin-Wave Theory of Ferromag-

nets

In this part we will discuss the concept of spin waves which enables to study
the some physical properties of magnetic systems at low temperatures. This
theory was originally introduced by F. Bloch [1] and its main assumption
is that the ground state of the system is ordered and the excited states are
described as a collection of spin waves. At low temperatures it is reasonable
to expect the small amplitudes of the spin waves, thus the interaction among
spin waves can be neglected. We will consider in this part an isotropic
Heisenberg model defined by the Hamiltonian

Ĥ = −J
∑
i,j

ŜiŜj − gµBH
∑
i

Ŝz
i . (3.1)

Here Ŝi represents a vector spin-operator at the ith site of the lattice. This
operator is naturally defined as Ŝi = (Ŝx

i , Ŝ
y
i , Ŝ

z
i ) where Ŝα

i (α = x, y, z)
represent spatial components of the standard spin operators, g is the Landé
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factor, µB is the Bohr magneton and H denotes the external magnetic field
which is applied along z axis. J is the exchange integral which is assumed
to be positive since we are going to investigate the ferromagnetic systems.

Adopting the basic concept of lattice vibrations, we can write the fol-
lowing equation of motion of the spin Ŝℓ on the j th lattice point

dŜℓ

dt
=

i

~
[H, Ŝℓ]. (3.2)

In what follows, we will use the following commutation relations for spin
operators

[Ŝa
i , Ŝ

b
j ] = iεabcδijŜ

c
j , a, b, c = x, y, or z (3.3)

where εabc represents Levi-Civita tensor and δij is the Kronecker symbol.
Now, substituting the Hamiltonian (3.1) into (3.2) and employing relations
(3.3) one obtains

dŜℓ

dt
= −1

~
(Hℓ × Ŝℓ), (3.4)

where the local magnetic field Hℓ acting on the j th spin is given by

Hℓ =
∑
j

JjℓŜj + gµBHe3 (3.5)

with e3 = (0, 0, 1). Using two previous equations one easily obtains the
following equations of motion of the x, y and z components of the spin
operator

~
dŜx

ℓ

dt
= −

∑
j

Jjℓ(Ŝ
y
j Ŝ

z
ℓ − Ŝz

j Ŝ
y
ℓ ) + gµBHŜy

ℓ (3.6)

~
dŜy

ℓ

dt
= −

∑
j

Jjℓ(Ŝ
z
j Ŝ

x
ℓ − Ŝx

j Ŝ
z
ℓ )− gµBHŜx

ℓ (3.7)
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~
dŜz

ℓ

dt
= −

∑
j

Jjℓ(Ŝ
x
j Ŝ

y
ℓ − Ŝy

j Ŝ
x
ℓ ) (3.8)

If we restrict ourselves to the case of low-energy excitation, then the compo-
nents Ŝx

ℓ , Ŝ
y
ℓ can be regarded as small quantities of first order. Consequently,

the right-hand side of (3.8) is a small quantity of the second order, which
can be neglected and it follows from Eq. (3.8) that the zth component be-
comes a constant. Moreover, it is reasonable to put explicitly Ŝz

ℓ = S, since
the external magnetic field is assumed to be applied parallel to the zth axis.
Under these assumptions Eqs. (3.6) and (3.7) can be rewritten in the form

~
dŜx

ℓ

dt
= −S

∑
j

Jjℓ(Ŝ
y
j − Ŝy

ℓ ) + gµBHŜy
ℓ (3.9)

~
dŜy

ℓ

dt
= −S

∑
j

Jjℓ(Ŝ
x
ℓ − Ŝx

j )− gµBHŜx
ℓ , (3.10)

or alternatively

~
dŜ+

ℓ

dt
= −iS

∑
j

Jjℓ(Ŝ
+
ℓ − Ŝ+

j )− gµBHŜ+
ℓ (3.11)

~
dŜ−

ℓ

dt
= −iS

∑
j

Jjℓ(Ŝ
−
ℓ − Ŝ−

j )− gµBHŜ−
ℓ (3.12)

where we have introduced the spin-raising and spin-lowering operators

Ŝ+
ℓ = Ŝx

ℓ + iŜy
ℓ Ŝ−

ℓ = Ŝx
ℓ − iŜy

ℓ , (3.13)

that obey the following commutation rules

[Ŝz
k , Ŝ

+
ℓ ] = Ŝ+

k δkℓ, [Ŝz
k , Ŝ

−
ℓ ] = −Ŝ−

k δkℓ, [Ŝ+
k , Ŝ

+
ℓ ] = 2Ŝz

kδkℓ. (3.14)
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The above relations are directly obtained with the help of well-known com-
mutation relations of the spin operators (3.3).

To proceed further, we now express the spin-raising and spin-lowering
operators with the help of the Fourier transform, i.e.,

Ŝ+
q =

1√
N

∑
j

eiq·Rj Ŝ+
j , Ŝ−

q =
1√
N

∑
j

e−iq·Rj Ŝ−
j (3.15)

Ŝ+
j =

1√
N

∑
q

e−iq·Rj Ŝq, Ŝ−
j =

1√
N

∑
q

eiq·Rj Ŝq (3.16)

Substituting Eq.(3.16) into Eq.(3.12) and applying the following relation∑
ℓ

e−i(q1−q2)·Rℓ = Nδq1,q2 (3.17)

one gets equation

−i~
dŜ−

q

dt
=

[
S
∑
ℓ

Jjℓ(1− e−iq·(Rj−Rℓ)) + gµBH
]
Ŝ−
q . (3.18)

If we now introduce a real quantity

J(q) =
∑
j

J(Rj)e
−iq·Rj (3.19)

then we rewrite (3.18) as

−i~
dŜ−

q

dt
=

{
S
[
J(0)− J(q)

]
+ gµBH

}
Ŝ−
q . (3.20)

It is straightforward to obtain the solution of this equation in the form

Ŝq = δŜqe
i(ωqt+α) (3.21)
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where the eigenfrequencies of the spin waves are given by

~ωq = S
[
J(0)− J(q)

]
+ gµBH. (3.22)

One should notice here that in the limit of small q we obtain ~ωq ≈ q2.
Now, using Eq.(3.21) we can express the spin operators in the real space

as follows

Ŝ−
j =

1√
N
δŜqe

i(q·Rj+ωqt+α) (3.23)

Ŝx
j =

1√
N
δŜq cos

[
i(q ·Rj + ωqt+ α)

]
(3.24)

and

Ŝy
j = − 1√

N
δŜq sin

[
i(q ·Rj + ωqt+ α)

]
. (3.25)

Finally, it is straightforward to prove that the energy difference between
an excited state and ground state is given by

Eq − E0 = ~ωq, (3.26)

where ~ωq represents the excitation energy of the spin wave with the wavevec-
tor q. The proof of the last statement is left as an appropriate exercise for
readers.

35



3.2 Holstein-Primakoff theory of ferromagnets

3.2 Holstein-Primakoff theory of ferromag-

nets

The Bloch’s spin-wave theory discussed in previous chapter represents a very
simple approach in which we completely neglect the interaction among spin
waves. This deficiency can be eliminated using an alternative formulation
based on magnon variables (or creation-annihilation operators) developed
by Holstein and Primakoff [2]. In this part we apply The Holstein-Primakoff
theory to case of an anisotropic quantum Heisenberg model described by
the Hamiltonian

Ĥ = −J
∑
i,j

(Ŝx
i Ŝ

x
j + Ŝy

i Ŝ
y
j + Ŝz

i Ŝ
z
j )− gµBH

∑
i

Ŝz
i . (3.27)

The meaning of all symbols in previous Eq. (3.27) is the same as in previous
text.

In order to apply a spin-wave picture to analyze magnetic properties of
the model under investigation, one has to perform three subsequent math-
ematical transformation. At first, we express the components of the spin
operators trough spin-lowering and spin raising operators, then we intro-
duce so-called creation and annihilation operators and finally, we perform
a Fourier transform of the relevant all creation and annihilation operators
entering the Hamiltonian. The eigenvalues of the final Hamiltonian then en-
able to determine relevant physical quantities applying standard relations
of statistical mechanics. For further manipulations it is more convenient to
rewrite (3.27) as follows

Ĥ = −J
∑
ℓ,δ

(Ŝx
ℓ Ŝ

x
ℓ+δ + Ŝy

ℓ Ŝ
y
ℓ+δ + Ŝz

ℓ Ŝ
z
ℓ+δ)− gµBH

∑
ℓ

Ŝz
ℓ (3.28)

where ℓ labels the lattice sites and δ denotes nearest neighbors of the relevant
site and we assume that J > 0. The integrals of motion for Hamiltonian
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(3.28) are the total z th component Ŝz =
∑

k Ŝ
z
k and the total spin of the

system.
The ground state of the system is ordered and for H > 0 the magnetic

moment is paralell to the z axis. If we consider the lattice consisting of N
atoms with spin S, then the ground-state vector in the spin basis reads |0⟩
= |NS,NS⟩. Of course, we work in a real space basis in which the spin
operators Ŝz

ℓ are diagonal. We recall that the eigenvalues MS = −S, −S +
1, ..., S and eigenvectors |MS⟩ℓ of the operator Ŝz

ℓ satisfy the following
equation

Ŝz
ℓ |MS⟩ℓ = MS|MS⟩ℓ. (3.29)

Now, applying operators (3.13) to the eigenvectors |MS⟩ℓ one obtains

Ŝ+
ℓ |MS⟩ℓ =

√
(S −MS)(S −MS − 1)|MS + 1⟩ℓ (3.30)

and

Ŝ−
ℓ |MS⟩ℓ =

√
(S +MS)(S −MS − 1)|MS − 1⟩ℓ. (3.31)

In addition to the spin-raising and spin-lowering operators, we will also
use in our analysis the operator describing a deviation of the zth spin-
component from its maximum value, namely,

n̂ℓ = S − Ŝz
ℓ . (3.32)

The eigenvalues of this operator are integers nl = 0, 1, 2, ..., 2S, (or nl =
S −MS), thus we can rewrite Eqs.(3.30) in the form

Ŝ+
ℓ |nℓ⟩ℓ =

√
2S

√
1− (nℓ − 1)

2S

√
nℓ|nℓ − 1⟩ℓ. (3.33)

Le us note that performing a similar procedure is also possible for Eq.(3.31)
and it will be used later.
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Now, with the help of (3.13), we can rewrite the Hamiltonian (3.28) in
the form

Ĥ = −J
∑
ℓ,δ

[1
2
(Ŝ+

ℓ Ŝ
−
ℓ+δ + Ŝ−

ℓ Ŝ
+
ℓ+δ) + Ŝz

ℓ Ŝ
z
ℓ+δ

]
− gµBH

∑
ℓ

Ŝz
ℓ . (3.34)

which is suitable for introducing the Holstein-Primakoff magnon represen-
tation. In order to define the relevant transformation, we at first introduce
the standard creation and annihilation operators that are defined as

a†ℓΨnℓ
=

√
nℓ + 1Ψnℓ+1, aℓΨnℓ

=
√
nℓΨnℓ−1. (3.35)

The central idea of the Holstein-Primakoff approach is based on the intro-
duction of the following transformation

Ŝ+
ℓ = (2S)1/2

(
1− a†ℓaℓ

2S

)1/2

aℓ (3.36)

Ŝ−
ℓ = (2S)1/2a†ℓ

(
1− a†ℓaℓ

2S

)1/2

(3.37)

Ŝz
ℓ = S − a†ℓaℓ. (3.38)

As already noted above, the eigenvalues of a†ℓaℓ are arbitrary integers, while
that of n̂ℓ are limited to the range 0 ≤ nℓ ≤ 2S. Fortunately, this discrep-
ancy does not play any important role in the calculation, since the transition
from the state with nℓ ≤ 2S to states with nℓ > 2S never occur, e.g.

Ŝ−
ℓ Ψ2S = (2S)1/2(2S + 1)1/2

(
1− 2S

2S

)1/2

Ψ2S+1 = 0. (3.39)

Now we transform the operators aℓ, a
†
ℓ from the real space to the reciprocal

space by the following Fourier tansform

aℓ =
1√
N

∑
q

e−iq·Rℓbq (3.40)
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a†ℓ =
1√
N

∑
q

eiq·Rℓb†q (3.41)

where N denotes the total number of atoms, q represents a vector of the
reciprocal space, and Rℓ represents a vector specifying the position of ℓth
atom in the lattice.

The magnon-annihilation and magnon-creation operators are given by

bq =
1√
N

∑
ℓ

eiq·Rℓaℓ (3.42)

b†q =
1√
N

∑
ℓ

e−iq·Rℓa†ℓ (3.43)

and they obey the usual magnon commutation relations

[bq1 , b
†
q2
] = δq1q2 , [bq1 , bq2 ] = [b†q1

, b†q2
] = 0. (3.44)

It is useful to note here that the operator b†q creates a magnon with the
wave vector q and the operator bq annihilates it. Moreover, it follows from
the transformation (3.40) and (3.41) that any change of the spin state at
arbitrary lattice site is described as a superposition of an infinite number of
the spin waves.

At this stage it is clear that further exact treatment of the problem is
impossible due to the complexity of applied transformations. The progress
is, however, still possible if we restrict ourselves to the case when the number
of excited states is small in comparison with 2S. Under this assumption,
we can neglect the higher order terms in expansion of the square root and
rewrite Eqs. (3.36) and (3.37) in the form

Ŝ+
ℓ = (2S)1/2

(
1− a†ℓaℓ

4S

)
aℓ + . . . (3.45)
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3.2 Holstein-Primakoff theory of ferromagnets

Ŝ−
ℓ = (2S)1/2a†ℓ

(
1− a†ℓaℓ

4S

)
+ . . . (3.46)

Finally, substituting (3.40) and (3.41) into previous equation one obtains

Ŝ+
ℓ =

(
2S

N

)1/2[∑
q1

e−iq1·Rℓbq1 −
1

4SN

∑
q1q2q3

ei(q1−q2−q3)·Rℓb†q1
bq2bq3 + . . .

]
(3.47)

Ŝ−
ℓ =

(
2S

N

)1/2[∑
q1

eiq1·Rℓb†q1
− 1

4SN

∑
q1q2q3

ei(q1+q2−q3)·Rℓb†q1
b†q2

bq3 + . . .

]
(3.48)

Similarly, the operator Ŝz
ℓ is given by

Ŝz
ℓ = S − 1

N

∑
q1q2

ei(q1−q2)·Rℓb†q1
bq2 . (3.49)

If we assume that each lattice site has z nearest neighbors, then we can
specify their positions on the lattice by introducing the vector

δ = Rℓ+δ −Rℓ. (3.50)

Substituting (3.47)-(3.50) into Eq.(3.34) and performing a rearrange-
ment of the terms one can rewrite the Hamiltonian as

Ĥ = −JNzS2 − gµBNHS + Ĥ0 + Ĥ1, (3.51)

where H0 is a bilinear form in the magnon variables and it is given by

Ĥ0 = − JS

N

∑
ℓ,δ

∑
q1q2

[
e−i(q1−q2)·Rℓeiq2·δbq1b

†
q2

+ ei(q1−q2)·Rℓe−iq2·δb†q1
bq2

]
+

JS

N

∑
ℓ,δ

∑
q1q2

[
ei(q1−q2)·Rℓbq1b

†
q2

+ e−i(q1−q2)·Rℓei(q1−q2)·δb†q1
bq2

]
+

gµBH

N

∑
ℓ,q1q2

ei(q1−q2)·Rℓb†q1
bq2 . (3.52)
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The term H1 includes higher-order terms and for the sake of simplicity will
be neglected. Now, taking into account the relation (3.17) and performing
the summation over ℓ and q2, we can simplify Eq.(3.52) as follows

Ĥ0 = −JzS
∑
q

(γqbqb
†
q + γ−qb

†
qbq − 2b†qbq) + gµBH

∑
q

b†qbq, (3.53)

where

γq =
1

z

∑
δ

eiq·δ (3.54)

and the summation in (3.54) runs over all nearest neighbors. For further
manipulation it useful noticing that

∑
q γq = 0 and moreover, for the crys-

tals with the symmetry center we have γq = γ−k. Employing the magnon
commutation rules [b†qbq] = 1, one obtains

Ĥ0 =
∑
q

[
2JzS(1− γq) + gµBH

]
b†qbq. (3.55)

The last equation can be rewritten in the following very simple form

Ĥ0 =
∑
q

~ωqn̂q, (3.56)

where n̂q is the magnon occupation operator and

~ωq = 2JzS(1− γq) + gµBH. (3.57)

Since the quantity γq can be expressed as follows

γq =
1

z

∑
δ

eiq·δ =
1

2z

∑
δ

(eiq·δ + e−iq·δ) =
1

2z

∑
δ

cos(q · δ), (3.58)

then the dispersion relation becomes

~ωq = 2JzS
[
1− 1

2z

∑
δ

cos(q · δ)
]
+ gµBH. (3.59)
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3.2.1 Internal Energy and Specific heat

In this subsection we will show how one can calculate the internal energy
and specific heat of Heisenberg model within the Holstein-Primakoff theory.
Before performing any calculation, it is useful noticing that due to neglecting
higher order terms in Eq. (3.45) and (3.46), we treat the ensemble of non-
interacting magnons. In further calculatiuon, we also will assume H = 0
and |q · δ| ≪ 1.

Under these assumptions, the internal energy of the magnon gas in ther-
modynamic equilibrium at temperature T can be expressed as

U =
∑
q

~ωq⟨nq⟩, (3.60)

where ⟨nq⟩ is given by the well-known Bose-Einstein relation

⟨nq⟩ =
[
exp

( ~ωq

kBT

)
− 1

]−1

. (3.61)

Substituting (3.61) into (3.60) one gets

U =
∑
q

~ωq

[
exp

( ~ωq

kBT

)
− 1

]−1

=
1

(2π)3

∫
Dq2

[
exp

(Dq2

kBT

)
− 1

]−1

d3q

=
1

2π2

∫
Dq4

[
exp

(Dq2

kBT

)
− 1

]−1

dq (3.62)

where we have introduced the lattice stiffnes as D = 2SJa2. If we denote
x = Dq2/kBT , then we can rewrite (3.62) as

U =
(kBT )

5/2

4π2D3/2

∫ xm

0

x3/2

exp(x)− 1
dx. (3.63)
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The last expression can be further simplified by considering the region
kBT ≪ ωmax. Then the upper limit in the integral (3.63) can be approxi-
mated by infinity and one obtains for internal energy the following analytical
expression for internal energy of the system

U =
(kBT )

5/2

4π2D3/2
Γ
(5
2

)
ζ
(5
2
, 1
)
. (3.64)

Here Γ and ζ denote the Gamma- and Riemann zeta-functions, respectively

and their numerical values of relevant arguments are known to be Γ
(

5
2

)
=

3
√
π

4
and ζ

(
5
2
, 1
)
= 1.341.

Thus, we finally obtain

U ≃ 0.45(kBT )
5/2

π2D3/2
. (3.65)

Consequently for the magnetic part of specific heat at constant volume is
given by

CV = 0.113kB

(kBT
D

) 3
2
. (3.66)

In this work we consider strictly insulating materials, thus there is no elec-
tron contribution to the total specific heat. Consequently, taking into ac-
count the phonon and magnon contribution we can express the total specific
heat at low temperatures by the formula

C = aT 3 + bT 3/2. (3.67)

It is clear from this equation that the magnon contribution can experimen-
tally easily determined if we plot the dependence of reduced specific heat
CT 3/2 versus T 3/2. The situation is schematically illustrated in Fig. 3.1
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Figure 3.1: The re-scaled specific heat vs. T 3/2

3.2.2 Magnetization and Critical Temperature

The magnetic moment of the system can be calculated from the equation

MS = gµB

⟨
(NS −

∑
q

b†qbq)
⟩
. (3.68)

The deviation of the magnetization from its saturation value can be ex-
pressed as

∆M = M(0)−M(T ) = gµB

∑
q

⟨nq⟩

=
gµB

(2π)3

∫ qm

0

[
exp

(Dq2

kBT

)
− 1

]−1

d3q (3.69)
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At low temperatures (Dq2 ≫ kBT/J) we obtain

∆M =
gµB

2π2

(kBT
JD

)3/2
∫ ∞

0

x1/2

exp(x)− 1
dx.

=
gµB

2π2

(kBT
JD

)3/2

Γ
(5
2

)
ζ
(3
2
, 1
)

= 0.117gµB

(kBT
D

)3/2

. (3.70)

The finite-temperature magnetization can be then expressed as

M(T ) = M(0)
[
1−

( T

Tc

) 3
2
]

(3.71)

where the critical temperature Tc is given by

Tc =
( M(0)

0.117gµB

) 2
3 D

kB
. (3.72)

3.3 Holstein-Primakoff theory of antiferro-

magnets

The Holstein-Primakoff theory can be extended also to the case of antifero-
magnetic Heisenberg model which can describe many real materials [7]. On
the other hand, the generalization of the Holstein-Primakoff for quantum
antiferromagnets is very interesting because such systems exhibit very inter-
esting magnetic properties that differ from quantum ferromagnets in many
respects. Our aim in this subsection is to investigate the antiferromagnetic
Heisenberg model spin system consisting of two interpenetrating sublattices
a and b, which is described by the Hamiltonian

Ĥ = −J
∑
i,j

ŜaiŜbj − gµBHa

∑
i

Ŝz
ai + gµBHa

∑
j

Ŝz
bj, (3.73)
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where J < 0 is the exchange interaction which couples the nearest neighbors
on lattice and the quantity Ha > 0 represents an external magnetic field
which is parallel to the z axis. In what follows, we will treat the problem ap-
plying the Holstein-Primakoff transformation for each sublattice separately.
At first we express the spin rising and lowering sublattice operators with
the help of creation-annihilation operators as follows

Ŝ+
aj = (2S)1/2

(
1−

a†jaj

2S

)1/2

aj, Ŝ−
aj = (2S)1/2a†j

(
1−

a†jaj

2S

)1/2

(3.74)

Ŝ+
bℓ = (2S)1/2

(
1− b†ℓbℓ

2S

)1/2

bℓ, Ŝ−
bℓ = (2S)1/2b†ℓ

(
1− b†ℓbℓ

2S

)1/2

(3.75)

Ŝz
aj = S − a†jaj, −Ŝz

bℓ = S − b†ℓbℓ. (3.76)

Next, we introduce the sublattice spin-wave variables

cq =
2√
N

∑
j

e−iq·Rjaj, c†q =
2√
N

∑
j

eiq·Rja†j (3.77)

dq =
2√
N

∑
ℓ

eiq·Rℓbℓ, d†q =
2√
N

∑
ℓ

e−iq·Rℓb†ℓ. (3.78)

In previous equations summations run over all N atoms of the a and b sub-
lattice, respectively. Moreover, the following magnon commutation relations
hold

[cq1 , c
†
q2
] = [dq1 , d

†
q2
] = δq1q2 ,

[cq1 , cq2 ] = [c†q1
, c†q2

] = 0. [dq1 , dq2 ] = [d†q1
, d†q2

] = 0. (3.79)
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Now, we expand (3.74)-(3.75) as

Ŝ+
aj =

(
4S

N

)1/2[∑
q1

e−iq1·Rjcq1 −
1

8SN

∑
q1q2q3

ei(q1−q2−q3)·Rjc†q1
cq2cq3 + . . .

]
(3.80)

Ŝ−
aj =

(
4S

N

)1/2[∑
q1

eiq1·Rjc†q1
− 1

8SN

∑
q1q2q3

ei(q1+q2−q3)·Rjc†q1
c†q2

cq3 + . . .

]
(3.81)

Ŝ+
bℓ =

(
4S

N

)1/2[∑
q1

e−iq1·Rℓdq1 −
1

8SN

∑
q1q2q3

ei(q1−q2−q3)·Rℓd†q1
dq2dq3 + . . .

]
(3.82)

Ŝ−
bℓ =

(
4S

N

)1/2[∑
q1

eiq1·Rℓd†q1
− 1

8SN

∑
q1q2q3

ei(q1+q2−q3)·Rℓd†q1
d†q2

dq3 + . . .

]
(3.83)

Ŝz
aj = S − 1

N

∑
q1q2

ei(q1−q2)Rjc†q1
cq2 . (3.84)

Ŝz
bℓ = −S +

1

N

∑
q1q2

e−i(q1−q2)Rℓd†q1
dq2 . (3.85)

Substituting these expansions into (3.73) and using (3.17) we obtain

Ĥ = NzJS2 + Ĥ0 + Ĥ1 (3.86)
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where Ĥ0 is a part of the Hamiltonian which is bilinear in magnon variables,
i.e.,

Ĥ0 = −2JzS
∑
q

[
γq
(
c†qd

†
q + cqdq

)
+
(
c†qcq + d†qdq

)]
+ gµBH

∑
q

(
c†qcq − d†qdq

)
(3.87)

where γq is given by (3.54) and the existence of symmetry center of the

lattice has been assumed. The quantity Ĥ1 includes higher-order terms
and will be for the simplicity neglected. However, even after neglecting
Ĥ1, the energy spectrum of system cannot be simply obtained, since the
Hamiltonian is not yet diagonal. Thus the main problem to be solved is the
diagonalization of Ĥ0. In order to make a progress, we introduce here new
set of the creation and annihilation operators α†

q, αq, β
†
q, βq

αq = uqcq − vqd
†
q, α†

q = uqc
†
q − vqdq, (3.88)

βq = uqdq − vqc
†
q., β†

q = uqd
†
q − vqcq, (3.89)

obeying the following commutation rules

[αq, α
†
q] = 1, [βk, β

†
q] = 1, [αq, βq] = 0. (3.90)

The real quantities entering previous equations satisfy relation

u2
q − v2q = 1, (3.91)

and the inverse transformation are given by

cq = uqαq − vqβ
†
q, c†q = uqα

†
q − vqβq, (3.92)

dq = uqβq − vqα
†
q, d†q = uqβ

†
q − vqαq, (3.93)
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The parameters uq and vq in transformations (3.92) and (3.93) can be de-
termined explicitly in the form

uq = cosh θq, vq = sinh θq, (3.94)

where θq is given by

tanh(2θq) = γq. (3.95)

The explicit forms of the transformation given by (3.94) and (3.95) is usually
called in the literature as Bogolyubov transformation. Substituting (3.92)
and (3.93) into (3.87) one finally obtains for Ĥ the folloving simple relation

Ĥ = NJzS(S + 1) +
∑
q

[
~ω+

q

(
α†
qαq +

1

2

)
+ ~ω−

q

(
β†
qβq +

1

2

)]
(3.96)

where we have defined the eigenfrequencies of the system as

~ω±
q = −2JzS

√
1− γ2

q ± gµBH. (3.97)

3.3.1 Ground-State Energy

In this part we investigate the ground-state energy of the two sublattice
antiferromagnetic Heisenberg system.

The lowest possible energy (i.e., the ground-state energy) can be straight-
forwardly obtained after setting H = 0 and averaging Eq.(3.96)

Eg ≡ ⟨Ĥ⟩ = NJzS(S + 1) +
∑
q

[
~ω+

q

(
⟨α†

qαq⟩+
1

2

)
+ ~ω−

q

(
⟨β†

qβq⟩+
1

2

)]
.

(3.98)

Of course, the ground state corresponds to the vacuum state in which no ex-
cited magnons are present in the system and therefore the previous equation
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reduces to

Eg = NJzS(S + 1)− 2JzS
∑
q

(
1− γ2

q

)1/2

= NJzS2
[
1 +

1

S

(
1− 2

N

∑
q

√
1− γ2

q

)]
. (3.99)

The parameter γq depends on the lattice structure and it is given by

γq =
1

d

d∑
i=1

cos qi, (3.100)

where d = 1 for the one-dimensional chain, d = 2 for two-dimensional
square, and d = 3 for three-dimensional simple-cubic lattice, respectively.
In order to find numerical values of Eg we have to evaluate the sum over q
in Eq. (3.99) which must be taken over all N/2 points in the first Brillouin
zone of the sublattice. The relevant sum can be expressed as

Id =
2

N

√
1− γ2

q

=
1

(2π)d

∫ π

−π

. . .

∫ π

−π

dq1 . . . dqd

[
1−

(1
d

d∑
i=1

cos qi

)2]1/2
. (3.101)

Evaluating the above expression one gets

I1
.
= 0.637, I2

.
= 0.842, I3

.
= 0.903, (3.102)

and using these numerical values, we obtain the ground-state energy in the
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form

Eg = 2NJS2
(
1 +

0.363

S

)
for the linear chain

Eg = 4NJS2
(
1 +

0.158

S

)
for the square lattice (3.103)

Eg = 6NJS2
(
1 +

0.097

S

)
for the cubic lattice.

One should note here that all numerical values of the ground-state energy
satisfy the Anderson inequality

1

2
NJzS2(1 +

1

zS
) < Eg <

1

2
NJzS2. (3.104)

It is also useful to note that for the spin-1/2 linear chain Eq.(3.104) gives
the value Eg/(NJ) = 0.863 which is in agreement with the exact Bethe-
Hulten [3, 4] value Eg/(NJ) = 0.5(4 ln 2 − 1) = 0.886. On tha basis of
this excellent agreement one should assume that the spin-wave theory gives
acceptable quantitative results also for other lattices and spin values.

The most important qualitative finding in this part is the fact that the
energy corresponding to the saturated antiparallel ordering is not the ground
state energy of the two-sublattice antiferromagnetic system. This finding is
a direct consequence of the fact that the total sublattice magnetization are
not the constants of motion.

3.3.2 Sublattice Magnetization

At first let us examine in this part the ground-state sublattice magnetization
which is defined as

Ma = gµB

⟨∑
j

Ŝz
aj

⟩
=

1

2
NS −

∑
q

⟨
c†qcq

⟩
(3.105)
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Using the Bogolyubov transformation (3.94) we obtain

Ma =
1

2
NS −

∑
q

{
cosh2(θq)

⟨
α†
qαq

⟩
+sinh2(θq)

⟨
βqβ

†
q

⟩
− sinh(θq) cosh(θq)(

⟨
α†
qβ

†
q

⟩
+
⟨
αqβq

⟩
)
}

(3.106)

At zero temperature there are no excited states and therefore Eq.(3.106)
simplifies as follows

Ma =
1

2
NS −

∑
q

sinh2(θq). (3.107)

After substituting the relevant expression for sinh(θq) one obtains expression

Ma =
1

2
NS − 1

4

∑
q

[(
1− γq
1 + γq

)1/2

+

(
1 + γq
1− γq

)1/2

− 2

]
, (3.108)

which can finally be rewritten as

Ma =
NS

2

[
1− 1

2S

(
2

N

∑
q

1√
1− γ2

q

− 1

)]
. (3.109)

In order to proceed further, we express the sum Sd =
2
N

∑
q

1√
1−γ2

q

appearing

in (3.109) in the following integral form

Sd =
2

N

∑
q

1√
1− γ2

q

=
1

(2π)d

∫ π

−π

· · ·
∫ π

−π

dλ1 . . . dλd

[
1−

(
1

d

d∑
j=1

cosλj

)2]−1/2

.(3.110)
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Evaluating this integral for the simple cubic lattice (d = 3) and plane square
lattice (d = 2) one obtains values S3 = 1.156 and S2 = 1.393 from which
the sublattice magnetization are given by

Ma =
NS

2

(
1− 0.078

S

)
for d = 3 (3.111)

Ma =
NS

2

(
1− 0.197

S

)
for d = 2. (3.112)

Thus we can conclude that the spin-wave theory predicts a long-range or-
der in three- and two dimensional antiferromagnetic Heisenberg systems,
however, as it is clear from (3.110)-(3.112), the sublattice magnetizations
do not take their saturation values at zero temperature. This behavior ap-
pears due to quantum fluctuations at the ground state that are stronger in
lower dimensions.

In the case of linear chain (d = 1), the integral S1 diverges logarith-
mically indicating that the sublattice magnetization has zero expectation
value. This result is in agreement with exact calculations and represents a
significant improvement over the standard mean-field theory which predicts
the existence of long-range order also for one dimensional Heisenberg model.

Finally, let us comment on the calculation of the temperature depen-
dence of the sublattice magnetization for the antiferromagnetic Heisenberg
model. The deviation of the sublattice magnetization from its ground-state
value is calculated from

Ma(0)−Ma(T ) =
∑
q

⟨nq⟩ cosh(2θq)

=
∑
q

⟨nq⟩
(
1− γ2

q

)−1/2
(3.113)

where the mean number of bosons is obviously given by

⟨nq⟩ =
1

exp
( ~ωq

kBT

)
− 1

(3.114)
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with

~ωq = (2JSz)2(1− γ2
q) (3.115)

However, the explicit calculation of sublattice magnetizations at arbitrary
temperature represents hard and non-trivial mathematical task. Neverthe-
less, at the temperatures that are significantly lower then the Neel transition
temperature TN , one finds that the sublattice magnetization is proportional
to (T/TN)

2. The proof of this behavior is left for the reader.
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Chapter 4

Jordan-Wigner Transformation
for the XY Model

In previous parts of this text we have discussed how to apply the bosoniza-
tion technique within the Holstein-Primakoff approach to the ferromagnetic
and antiferromagnetic spin systems. In the present chapter we will investi-
gate a similar approach, which is known as a method of fermioniozation. In
particular, we will discuss application of the Wigner-Jordan transformation
to the isotropic quantum XY model in order to clarify important points of
this method.

The main idea of this approach is to transform the Hamiltonian de-
scribing a spin system by the use of new operators obeying the fermion
anticommutation rules.

Before we start our analysis, it is useful to note that the spectrum of the
XY model was exactly found by H.Bethe [3] in 1931. The Bethe’s approach
is of great importance, however, it is quite involved and rather abstract,
thus it is difficult to understand even such basic properties as long-range
order. A much more natural approach to the problem of interacting spin-
1/2 systems was originally introduced in 1928 by Jordan and Wigner [5],
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4.1 Jordan-Wigner Transformation for the XY Model

who invented simple mathematical transformations converting spin-1/2 sys-
tems into problems of interacting (and in some cases even non-interacting)
spinless fermions. In fact, the XY model which is a special case of the
Heisenberg Hamiltonian, reduces to a free theory of spinless fermions un-
der the Jordan-Wigner transformations. Another reason for choosing the
XY model, is that the low-energy properties of the full anti-ferromagnetic
Heisenberg chain, such as the presence of gapless excitations and absence
of a long range order are very similar to those of the XY model (see [6] and
references therein).

We will study a linear chain of N spin-1/2 atoms interacting antiferro-
magnetically with their nearest neighbors. This system is described by the
Hamiltonian

Ĥ = J
N∑
j=1

(Ŝx
j Ŝ

x
j+1 + Ŝy

j Ŝ
y
j+1), (4.1)

where J > 0 represents the exchange interaction ans Ŝα
i are spin-1/2 opera-

tors obeying the usual commutation relations (3.3). As usually, we assume
cyclic boundary conditions, with Ŝα

N+1 = Ŝα
1 , α = x, y. Of course, for

J < 0 the ferromagnetic case of (4.1) is obtained. Thus, if we solve the
antiferromagnetic problem exactly, then we can immediately obtain also
the solution of the ferromagnetic XY chain. Similarly as in the case of
bozonization, we at first introduce spin-raising and spin-lowering operators
(3.13) and rewrite the Hamiltonian as a bilinear form in these operators.,
i.e.

Ĥ =
J

2

N∑
j=1

(Ŝ−
j Ŝ

+
j+1 + Ŝ−

j+1Ŝ
+
j ). (4.2)

It clear that without loss of generality we can set J = 1 in all subsequent
calculations. We know that the Ŝ± operators belonging to the same site
obey anticommutation relations, while that ones on different sites satisfy
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4.1 Jordan-Wigner Transformation for the XY Model

usual commutation relations and this mathematical property disables a di-
rect diagonalization of (4.2). The key to the solution of this problem is the
Jordan-Wigner transformation which enables to obtain the Hamiltonian in
terms of pure fermion operators.

The Jordan–Wigner transformation explicitly reads

c†n = Ŝ+
n exp

(
−iπ

n−1∑
j=1

Ŝ+
j Ŝ

−
j

)
, cn = Ŝ−

n exp
(
iπ

n−1∑
j=1

Ŝ+
j Ŝ

−
j

)
, (4.3)

and the inverse transformation is given by

Ŝ+
n = c†n exp

(
iπ

n−1∑
j=1

c†jcj

)
, Ŝ−

n = cn exp
(
iπ

n−1∑
j=1

c†ncn

)
. (4.4)

Here it is worth noticing that the signs in the exponents and the order of
the multipliers in (4.3) and (4.4) are not important.

The operators c†j, ck obey the canonical fermion algebra, i.e.

{cj, c†k} = δjk, {c†j, c
†
k} = 0, {cj, ck} = 0. (4.5)

To illustrate the mathematics behind, we will explicitly prove the first rela-
tion, while the other anti-commutators in (4.5) can be computed in a similar
fashion.

At first we recall the validity of the following relations [Ŝ+
j Ŝj, Ŝ

+
k Ŝk] = 0,

[Ŝ+
j Ŝj, Ŝk] = −δjkŜk, [Ŝ

+
j Ŝj, Ŝ

+
k ] = δjkŜ

+
k , (Ŝ

+
j Ŝj)

2 = Ŝ+
j Ŝj, since the spin-

raising and spin-lowering operators on different sites commute and on the
same site behave like fermions. Therefore,

exp
(
±iπ

m∑
j=n

Ŝ+
j Ŝ

−
j

)
=

m∏
j=n

exp(±iπŜ+
j Ŝ

−
j ) (4.6)
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4.1 Jordan-Wigner Transformation for the XY Model

and the exponential function on the r.h.s of previous equation can be easily
evaluated as follows

exp(±iπŜ+
j Ŝ

−
j ) =

∞∑
k=0

1

k!
(±iπ)k(Ŝ+

j Ŝ
−
j )

k

= 1 +
∞∑
k=1

1

k!
(±iπ)kŜ+

j Ŝ
−
j

= 1 + (e±iπ − 1)Ŝ+
j Ŝ

−
j = 1− 2Ŝ+

j Ŝ
−
j . (4.7)

Similarly, using the following anticommutators

{Ŝ−
j , 1− 2Ŝ+

j Ŝ
−
j } = 0, {Ŝ+

j , 1− 2Ŝ+
j Ŝ

−
j } = 0, (4.8)

one obtains relations[
exp

(
±iπ

m∑
j=n

Ŝ+
j Ŝ

−
j

)
, Ŝ−

k

]
=

[
exp

(
±iπ

m∑
j=n

Ŝ+
j Ŝ

−
j

)
, Ŝ+

k

]
= 0, k /∈ [n,m]

(4.9)

{
exp

(
±iπ

m∑
j=n

Ŝ+
j Ŝ

−
j

)
, Ŝ−

k

}
=

{
exp

(
±iπ

m∑
j=n

Ŝ+
j Ŝ

−
j

)
, Ŝ+

k

}
= 0, k ∈ [n,m].

(4.10)

Although all the above calculations have a preparatory character, they are of
crucial importance to demonstrate the fermionic nature of cj and c†k. Really,
using (4.6)- (4.10), we can now straightforwardly calculate the following
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4.1 Jordan-Wigner Transformation for the XY Model

anti-commutators:

{cj, c†k} = Ŝ−
j exp

(
iπ

j−1∑
ℓ=1

Ŝ+
ℓ Ŝ

−
ℓ

)
exp

(
−iπ

k−1∑
ℓ=1

Ŝ+
ℓ Ŝ

−
ℓ

)
Ŝ+
k

+ Ŝ+
k exp

(
−iπ

k−1∑
ℓ=1

Ŝ+
ℓ Ŝ

−
ℓ

)
exp

(
iπ

j−1∑
ℓ=1

Ŝ+
ℓ Ŝ

−
ℓ

)
Ŝ−
j

= Ŝ−
j exp

(
iπ

k−1∑
ℓ=j

Ŝ+
ℓ Ŝ

−
ℓ

)
Ŝ+
k Ŝ

+
k exp

(
iπ

k−1∑
ℓ=j

Ŝ+
ℓ Ŝ

−
ℓ

)
Ŝ−
k

= (Ŝ−
j Ŝ

+
j − Ŝ+

j Ŝ
−
j ) exp

(
iπ

k−1∑
ℓ=j

Ŝ+
ℓ Ŝ

−
ℓ

)
= 0, k > j. (4.11)

In the same way, we derive relation

{cj, c†k} = {ck, c†k}
† = 0, k < j (4.12)

{ck, c†k} = Ŝ−
k Ŝ

+
k + Ŝ+

k Ŝ
−
k = 1. (4.13)

Thus we have successfully proved the fermionic commutation relations and
now we can transform the relevant terms in the Hamiltonian

For 1 ≤ j ≤ N − 1 one obtains

Ŝ−
j Ŝ

+
j+1 = exp

(
−iπ

j−1∑
ℓ=1

c†ℓcℓ

)
cjc

†
j+1 exp

(
iπ

j∑
ℓ=1

c†ℓcℓ

)
= cj exp

(
−iπ

j−1∑
ℓ=1

c†ℓcℓ

)
exp

(
iπ

j∑
ℓ=1

c†ℓcℓ

)
c†j+1

= cj exp(iπc
†
jcj)c

†
j+1 = cj(1− 2c†jcj)c

†
j+1

= −(1− 2c†jcj)cjc
†
j+1) = −cjc

†
j+1 = c†j+1cj (4.14)

and similarly we have

Ŝ−
j+1Ŝ

+
j = (Ŝ−

j Ŝ
+
j+1)

† = c†jcj+1. (4.15)
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4.1 Jordan-Wigner Transformation for the XY Model

Here one should notice that in deriving previous equations, we have used
the following relations

[c†jcj, c
†
kck] = 0, (c†jcj)

2 = c†jcj,

[c†jcj, ck] = −δjkck, [c†jcj, c
†
k] = −δjkc

†
k,

{1− 2c†jcj, cj} = 0, {1− 2c†jcj, c
†
j} = 0, (4.16)

[
exp

(
±iπ

m∑
j=n

c†jcj

)
, ck

]
=

[
exp

(
±iπ

m∑
j=n

c†jcj

)
, c†k

]
= 0,

k /∈ [n,m] (4.17)

{
exp

(
±iπ

m∑
j=n

c†jcj

)
, ck

}
=

{
exp

(
±iπ

m∑
j=n

c†jcj

)
, c†k

}
= 0,

k ∈ [n,m]. (4.18)

After expressing the special cyclic boundary term (Ŝ−
N Ŝ

+
1 + Ŝ−

1 Ŝ
+
N) in

terms of c’s and substituting Eqs.(4.14) and (4.15) into Eq.(4.2), we can
rewrite the Hamiltonian of the system as

Ĥ =
1

2

∑
j

(c†j+1cj + c†jcj+1) + Ĥb (4.19)

where

Ĥb = −1

2

(
c†1cN + c†Nc1

)[
1 + exp

(
±iπ

N∑
j=1

c†jcj

)]
(4.20)

represents the boundary term, which gives an O(N−1) contributions to the
macroscopic physical quantities and for this reason will be neglected in
further calculations.
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4.1 Jordan-Wigner Transformation for the XY Model

Applying this simplification, we are left with the problem of diagonal-
ization of the following bilinear form

Ĥ =
1

2

∑
j

(c†j+1cj + c†jcj+1), (4.21)

which describes free spinless fermions on a cyclic chain with nearest neighbor
hopping.

In order to diagonalize the Hamiltonian (4.21) we rewrite it in the form

Ĥ =
∑
jk

c†jAjkck, (4.22)

where the elements of the matrix A are given by

Ajk =
1

2
(δj,k+1 + δk,j+1). (4.23)

Taking into account the translational invariance of the lattice, we find the
eigenvectors and eigenvalues of A to be

ϕqj =
1√
N
eiqj, Λq = cos(q), (4.24)

with q = 2πn
N

and N/2 ≤ n ≤ N/2 − 1. The eigenfunctions ϕqk form an
orthonormal and complete set, thus we can introduce new operators obeying
the canonical anticommutation rule

ηq =
∑
j

ϕ∗
qjcj, η†q =

∑
j

ϕqjc
†
j. (4.25)

Using the following inverse transformations

cj =
∑
q

ϕqjηq, c†j =
∑
q

ϕqjη
†
q (4.26)
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4.1 Jordan-Wigner Transformation for the XY Model

the Hamiltonian (4.22) can be rewritten in the diagonal form

Ĥ =
∑
q

Λqη
†
qηq. (4.27)

Since some of the eigenvalues of A will be negative, we perform an additional
transformation

ξq = ηq, Λq ≥ 0 (4.28)

ξq = η†q, Λq < 0 (4.29)

and obtain

Ĥ =
∑

q,Λq≥0

Λqξ
†
qξq +

∑
q,Λq<0

Λqξ
†
qξq

=
∑
q,Λq

|Λq|ξ†qξq −
∑

q,Λq<0

|Λq|

=
∑
q,Λq

|Λq|
(
ξ†qξq −

1

2

)
. (4.30)

Here the ξ operators again obey the canonical anticommutation rules.
As usually, the ground state |0⟩ satisfies equation

ξq|0⟩ = 0, ∀q (4.31)

and the operator ξ†q generates an elementary fermion excitation with energy
|Λq| above the ground state.

The dispersion relation for the model under investigation is shown in Fig
4.1. As one can see there always exist gapless excitations near q = ±π/2.
The ground state energy reduced per one spin is given by

U0 =
⟨Ĥ⟩
N

= − 1

N

∑
q

1

2
|Λq|

=

∫ π

π

dq

4π
| cos(q)| = − 1

π

∫ π/2

0

cos(q)dq = − 1

π
(4.32)
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Figure 4.1: Dispersion relation of the XY model.

Of course, the method of fermionization can been extended to many
other systems including the systems with higher spin and higher spatial
dimensions. However, the analysis of this systems requires complex and
tedious calculations and sometimes also the applications additional theo-
retical tools methods (for example the Green function technique) that are
beyond the scope of this introductory text.
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Conclusion

Conclusion

In this work we have discussed some theoretical tools that are frequently
used to investigate the localized quantum spin models.

The first approach is the standard mean-field theory, which represents
the simplest possible technique usually applied to understand basic quan-
titative features of various theoretical models of quantum magnetism. Al-
though this method is included in many textbooks, the formulation is usu-
ally very simplified and frequently the authors do not derive the Gibbs
free energy within this method. To avoid this problem, we have used and
elegant formulation based on the Bogolyubov inequality which enables to
extend our approach to formulate more accurate theories (for example the
Oguchi approximation or Constant Coupling Method). One should also em-
phasize that in deriving the partition function we have applied the Cauchy
integral formula, which enables to calculate exponential function with a ma-
trix argument. This is an unknown trick which can be used in calculations
in nay branch of theoretical physics.

In the Chapter 3 we have discussed the standard spin-wave theory sep-
arately for ferromagnetic and antiferromagnetic materials. We have shown
in detail how to introduce the boson operators that enable to calculate sev-
eral physical quantities such as magnetization, internal energy and magnetic
contribution to the specific heat.

The last part is dedicated to the method of fermionization. Here we have
discussed the application o Jordan-Wigner transformation to the quantum
XY model with spin 1/2. This approach represent another standard theo-
retical approach which is used to investigate quantum magnetism.

It is clear from the content of this supporting text that we have covered
just one special part of quantum theory of magnetism, which is, however,
discussed elementary enough. In order to understand further interesting fea-
tures of the quantum magnetism it is necessary to study further textbooks,
for example [8], [9], [10], [11] ).
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