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Abstract

The behaviour of a discrete-event dynamic system is often conveniently
described using a matrix algebra with operations max and plus. Such a
system moves forward in regular steps of length equal to the eigenvalue of
the system matrix, if it is set to operation at time instants corresponding
to one of its eigenvectors. However, due to imprecise measurements it is
often unappropriate to use exact matrices. One possibility to model im-
precision is to use interval matrices. We show that the problem to decide
whether a given vector is an eigenvector of one of the matrices in the given
matrix interval is polynomial, while the complexity of the existence prob-
lem of a universal eigenvector remains open. As an aside, we propose an
alternative combinatorial method for solving two-sided systems of linear
equations over the max-plus algebra.
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1 Introduction

The behaviour of a discrete-event dynamic system is often conveniently de-
scribed using a matrix algebra with operations max and plus. The basic idea
is as follows. Suppose that the operation of the system is performed in cycles
and consists of n interrelated jobs. The number a;; denotes the duration of the
operation of job j needed for job i. (If job ¢ does not need job j then a;; = —00.)
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If vector x(k) = (z1(k),z2(k),...,x,(k)) denotes the time instants in which all
jobs started for the k™ time, then if all the jobs wait for all the preceding jobs
to finish their operation, the earliest possible starting times of k + 1°* cycle are
expressed by vector x(k + 1), with

l‘l(k' + 1) = max{ail + 1‘1(I€), (07D + IL'Q(]C), vy Qg + l’n(k)}

Cuninghame-Green [5] introduced a convenient formalism for the description
of such situations. In the max-plus algebra (R, ®, ®), the set R is equal to the
set of all real numbers appended with —oco, & = max and ® =normal addition
of real numbers. The max-plus algebra is a semiring ([1], [15]) with the additive
zero equal to —oo and multiplicative unit equal to the real number 0.

Matrices can be multiplied formally in the same manner as in the classical
algebra (over the field of reals), just using the @ and ® operations instead of
addition and multiplication. Then the development of a system described above
can be expressed by a vector equation over max-plus algebra of the form:

x(k+1) = A®x(k).

In what follows, the set of all m X n matrices over R will be denoted by
R(m,n) and the set of all column n-vectors over R by R(n). Vectors are usually
denoted by boldface letters, matrices by capitals, the i’ column of matrix A by
A;.

A finite number A and a vector x € R,, with at least one finite entry are called
an eigenvalue and an eigenvector of a matrix A € R(n,n) if

ARx=)\Qx.

We suppose that the reader is familiar with the basic eigenvalue-eigenvector the-
ory for max-plus algebra, in particular with the role played by the associated
digraph G(A) of the matrix A. Nevertheless, we summarize here the most im-
portant facts.

Cuninghame-Green [6] was the first one to derive the celebrated result, stating
that each irreducible matrix (i.e. one with strongly connected associated digraph)
has one and only one eigenvalue A(A), which is equal to the maximum cycle mean
of the associated digraph of A, i.e.

A(A) = max {M, p is a cycle in G(A)} , (1)
t(p)
where for a cycle p = (iy, ia, . . ., ig) its weight w(p) = ai,i, @ Ainiy ® . .. R a;,4, and

its length ¢(p) = k.
This result has later been rediscovered by many other authors, for more ref-
erences see e.g. [1], [4] or [15]. Cuninghame-Green [7] showed that A(A) is the
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optimal solution of the linear program

A — min (2)
Atz —x; > ay for all pairs 4, j with a;; finite (3)

but a more practical algorithm of complexity O(n?) is due to Karp [10]. Moreover,
numerical experiments show that A(A) can be computed in almost linear time by
Howard’s algorithm [4].

Cuninghame-Green [7] also gave a complete description of the set of all eigen-
vectors of a given matrix. For a summary of this result, we need some more
concepts. A circuit of the associated digraph G/(A) is called critical, if its mean
is equal to A(A). The critical digraph G“(A) consists of those vertices (called
critical vertices) and arcs of G(A) that belong to some critical circuit. Two
critical vertices that belong to the same strongly connected component of G¢(A)
are said to be equivalent.

Now, if we subtract A(A) from each entry of A € R(n,n), the obtained matrix
B has A(B) = 0 but the eigenspaces of A and B are identical. In the metric matrix
['(B) = B&B*®...®B" of B necessarily some columns have their main-diagonal
entries equal to 0; they are said to be critical, as they correspond to critical
vertices of G(A) (and as well as of G(B)). These columns are eigenvectors of B
and of A and are called fundamental eigenvectors. Then each eigenvector of
A can be expressed as a max-plus linear combination of a set of m fundamental
eigenvectors corresponding to mutually nonequivalent critical vertices of G(A);
here m denotes the number of strongly connected components of G¢(A).

There are many important practical interpretations of the eigenvalue and
eigenvector of a matrix. We shall mainly use the following two of them:

1. If the system with matrix A has been started according to some eigenvector
x of matrix A, then it will move forward in regular steps with the same
length, i.e. the time elapsed between the consecutive starts of all jobs will

be equal to A(A).

2. Suppose that there is a given schedule for the system, requiring that the
time interval between two consecutive jobs should not exceed a certain value
1. Is it possible to start the system in such a way that the schedule will be
kept? In other words, does there exist a vector x such that

A@x < p®@x? (4)

The fact that A(A) is the optimal solution of the linear program (2-3)
implies

Lemma 1 For any square matriz A, inequality (4) is soluble if and only if p >
A(A).
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2 The eigenproblem for interval matrices

In some cases, the use of a precise matrix is inappropriate for the modelled situ-
ation, as the measurement imprecisions imply that the computations performed
with the exact matrix do not correspond to the real behaviour of the system.
The importance of dealing with interval data in the classical algebra has been
recognized for a very long time, however, we do not know any other publications
in the area of interval algebraic problems for max-plus algebra except for [2], [3].

We shall study some extensions of the eigenvector-eigenvalue problem over
max-plus algebra for interval square matrices. An interval matrix is the set of
matrices in the matrix interval of the form A = (A, A) with given A, A € R(n,n),
A < A. For simplicity, let us suppose that all the entries in A as well as in A
are finite. This implies that the associated digraphs of all matrices A € A are
strongly connected and hence each A € A has a unique eigenvalue A(A) given by

(1)

Definition 1 We say that a real number \ is a possible eigenvalue of an
interval matriz A if it is an eigenvalue of at least one A € A. A real number \

s o universal eigenvalue of an interval matriz A if it is an eigenvalue of each
AeA.

The expression of the eigenvalue A(A) of a matrix A in the form (1) by a con-
tinuous and isotone function of matrix entries immediately leads to the following
full description of the set of all eigenvalues of an interval matrix:

Theorem 1 A number \ is a possible eigenvalue of an interval matriz A if and

only if X € (A\(A), A\(A)). An interval matriz A has a universal eigenvalue if and

only if \(A) = A(A).

Let us mention here, that this result is in a marked contrast with the situation
in the classical algebra. The problem to decide whether a given rational number
is a possible eigenvalue of an interval matrix is NP-hard, which follows from the
results in [13] and [12] and is formulated as Theorem 21.17. in [11]. As far as
we know, an analogy of the universal eigenvalue has not been studied in classical
algebra.

Now we can turn our attention to eigenvectors.

Definition 2 We say that a vector x € R(n) is a possible eigenvector of an
interval matriz A if there exists A € A such that A®x = AMA) ® x. A vector
x € R(n) is a universal eigenvector of an interval matriz A if A@x = M\(A)®@x
for each A € A.

In the following sections we shall deal with the following problems: Given an
interval matrix A of order n decide whether:
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Problem 1. a given vector x € R(n) is a possible eigenvector of A;
Problem 2. A has a universal eigenvector.

An interpretation of a possible eigenvector x might be as follows: if a system
is started according to x, then there exists a concrete realization of the operation
of the system, materialized by a concrete matrix A from the given interval A, for
which the following starting times of all jobs will be delayed by the same value,
equal to the eigenvalue A\(A). If in the next cycles the system again happens to
be controlled by A, then it may continue this regular behaviour forever. It would
be interesting to get some bounds for a kind of a 'neighbourhood’ of matrix A
ensuring this regular behaviour with vector x, but this question is left open in
the present paper.

On the other hand, there is a plausible interpretation of a universal eigenvector
if the given interval matrix A has a universal eigenvalue A\. Namely, if x is a
universal eigenvector and the system is started according to x, then no matter
what the concrete realisations of the system in the following cycles will be, the
system will always move forward regularly in steps of length equal to \.

In the classical algebra it can be tested in polynomial time whether a given
rational vector is a possible eigenvector of an interval matrix [14]. Again, the
notion of a universal eigenvector seems not to have been studied.

3 Possible eigenvector
If we want to test whether a given vector x is a possible eigenvector of A, then

the difficulty is that we know neither the concrete matrix from A nor the corre-
sponding eigenvalue. Let us look at the example.

(3,8) (2,4) (6,9)

Example Consider an interval matrix A = | (2,6) (3,5) (1,2) |. Then A =
(4,5) (2,8) (3,7

3 2 6 8§ 4 9

2 3 1| withAA) =5andA=[6 5 2| with \(A) =8.

4 2 3 5 8 7

Now, if we take x = (1,2,3)7, then A ® x = (9,5,6)7, and as A > A for
each A € A, we see that if x is to be a possible eigenvector, its corresponding
eigenvalue must be at least 8 and A ® x must be at least (9,8,7)7. However,
A®x = (12,7,10)T, hence for no matrix A € A the vector A ® x can have in
its second and third coordinates the desired values. Hence x = (1,2, 3)T is not a
possible eigenvector of this interval matrix.

On the other hand, for x = (3,2,1)" we have A ® x = (7,5,7)7, so the
eigenvalue of x should be at least 6. Denote A\(x) = 6. Now we try to increase
the matrix A in each coordinate in such a way that we do not exceed A but for
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Input: an interval matrix A, a vector x.

1
2 if y —x is a constant vector

3 then x is a possible eigenvector, STOP

4 else begin A\(x) := max;{y; — 2;};

5. for all i, j : aj; = min{a;, A(x) +2; — 2;};

6. if (A* ® x) — x is a constant vector

7 then x is a possible eigenvector of A; STOP

8 else x is a not possible eigenvector of A; STOP
9 end

1

Figure 1: Algorithm PossibleEigenvector

each coordinate i of A ® x we ensure the value at least \(x) ® z;. It is easy to
see that we should set aj; = min{@;;, A\(x) + z; — 7;} so that in this example

A(x
6
A*=15
4

QU Ot =~

8
2
6

Since A < A* < A and A* ® x = 6 ® x, we see that x is a possible eigenvector of
A with the corresponding eigenvalue A = 6. m

Algorithm PossibleEigenvector for testing whether a given vector x is a pos-
sible eigenvector of an interval matrix A is given in Figure 1.

Theorem 2 Algorithm in Figure 1 is correct; its computational complexity is

O(n?).

Proof. Algorithm PossibleEigenvector ends with the positive answer in rows
3 and 7, where it has detected that x is an eigenvector of matrices A and A*,
respectively.

If x is not an eigenvector of matrix A (this will correspond to lines 4 and later
in the algorithm) then, due to Lemma 1 necessarily A(x) > A(A). Further, as
matrix A is the smallest one in A, vector A ® x will always be componentwise
greater or equal to y, so the smallest possible increase in the values of its entries
will be A(x). So if we want x to be translated by the same amount in each
coordinate, the only possibility is to increase some entries of A, as it is done in
row 5 of the algorithm. Condition in row 6 is not fulfilled only if some entries of
the newly defined matrix A* have exceeded the upper bound given by A, so in
this case x cannot be an eigenvector of any matrix in A.
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The verification of the computational complexity of the algorithm is trivial.

4 Universal eigenvectors

As said before, universal eigenvectors have a plausible interpretation if A\(A) =
A(A). Therefore we shall restrict ourselves to this case only. For simplicity, from
now on we shall assume that the given interval matrix has a universal eigenvalue
equal to 0.

We already know that each eigenvector of a given matrix is a max-plus linear
combination of a generating set of mutually nonequivalent fundamental eigen-
vectors [7]. Hence, if a vector x is to be a universal eigenvector, it must be a
max-plus linear combination of a generating set of mutually nonequivalent fun-
damental eigenvectors of matrix A (say uj,uy,...,u,,) and simultaneously an
eigenvector od A. Hence we look for a vector y of the form 32 F(y; ® u;) such
that

. m® m @
AY (iow)= Y yidw
i=1 i=1

This can be rewritten as

m @ m &
Y (Auw)®y =Y 0,0y
i=1 i=1

Since vectors u; are eigenvectors of A with eigenvalue 0 and A > A, we have that
A®u; > A®u; = u,; for all i. Hence looking for universal eigenvectors reduces to
solving special systems of two-sided max-plus equations with the same variables
in each side and one matrix elementwise greater or equal to the second one. The
previous discussion can be summarized by

Theorem 3 Let an interval matriz A with \(A) = MA) = 0 be given and let
ug, U, ..., U, be any generating system of fundamental eigenvectors of A. Then
there exists a universal eigenvector of A if and only if the two-sided system

CRy=DQ®Yy
with C; = A®w; and D; = u; for alli=1,2,...,m has a solution.

Although several method for solving general systems of two-sided max-plus
equations have been derived, e.g. in [8], [9], all of them are of iterative nature.
Moreover, even if [8] proves pseudopolynomiality of the proposed algorithm, the
existence of a polynomial algorithm is still an open question. We tried a more
combinatorial approach, which is for the special systems involved in the universal
eigenvector problem partially successful.
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5 Solving special two-sided systems of equations

In this section we deal with two-sided systems of linear equations over max-plus
algebra of the form
C®y=D®y with C > D. (5)

N denotes the set of row indices {1,2,...,n} and M is the set of column indices
{1,2,...,m} of matrices C' and D.

Lemma 2 If there exists a row i such that c;j > d;; for each j then system (5)
1s 1nsoluble.

Proof. To get a contradiction, suppose that a vector y is a solution of (5) and
that the maxima in the left-hand side and right-hand side of row ¢ have been
achieved in terms j and [ respectively, i.e.

cij +yj = m]?x{cz-k + oyt and dy + y = m]?x{dz-k + Yk}

Then
cij +yj > ¢+ oy > di + i,

a contradiction. m

Corollary 1 For each soluble system of the form (5) there exists for each row i
an index j such that ¢;; = d;j.

We shall call an index j from the previous Corollary critical for row i. In
what follows, let us denote the set of critical indices for row ¢ by K;. If a vector
y is given, then an index j is maximizing for row 7 in C ® y, if ¢;; + y; =
maxk{cik + yk}.

Lemma 3 For each solution'y of (5) there exists for each row i a critical maxi-
mizing indez.

Proof. Let us suppose that y is a solution of (5) and in row i of C' ® y and
D ® y maximizing terms are c¢;; + y; and d; + yi, respectively. This means
cij +yj = dix + Yk, hence yx = y; + ¢;j — dix. Then for the k™ term in row i of
C ® y we have
Cik + Yk = Cik + Yj + Cij — dir, 2 Cij + Y,

since ¢;p > dix. Should ¢;, — d; > 0 then index 7 is not maximizing in row 7 of
C ®y, a contradiction. Therefore index k is maximizing and critical for row 7 in
CRy. =

Hence looking for a solution of a two-sided system of equations of the form
(5) leads to choosing a suitable maximizing term from the critical indices for
each row of C'®y. The choice of these terms will be formalized in the following
theorem by the function j. This leads to the following necessary and sufficient
solvability condition.
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Theorem 4 A system of the form (5) is soluble if and only if each K; is nonempty
and there exists a function j : N — M such that j(i) € K; for alli € N and
for each subset {iy,is, ... it} of N such that the indices j(i1), j(iz),...,j(ix) are
mutually different, we have

Cirj(in) T Cisj(in) T -+ F Ciyj(ix) = Cirji(in) T Cinj(ia) + - - - T Ciyjiir) (6)

Proof. For the ’only if’ direction suppose that y is a solution of (5). Let us
take any subset {ij,is,...,it} € N. By Lemma 3, in each row there exists a
maximizing critical index of C' ® y, let us denote one such index for each row
by j(i1),l =1,2,...,k and suppose that the chosen column indices are mutually
different. Then we have

Cirj(ir) T Yi(ir) 2= Cirjligr) + YiGis)

foralll =1,2,...,k, while k +1 = 1. When we add the above inequalities, we
get (6).

Conversely, let us suppose that it is possible to choose for each row 7 a critical
column index j(i) in such a way that inequality (6) holds. Let us now denote
by J(N) = {j(i);i € N} the set of column indices of chosen columns and let C’
stand for the submatrix of C' created from columns of J(NN). Denote by p(j) the
number of rows with the chosen index in column j and consider the following
transportation problem (TP) with matrix C":

Z Z c;jxij —  max (7)

iEN jeJ(N)
Z Ty = lforalli e N (8)
jeJ(N)
Y xi; = p(j) forall j € J(N) 9)
ieN

xy; > OforallieN,jeJ(N) (10)

The TP (7-10) is balanced, hence soluble, and we show that one possible
optimal solution is given by z;;; = 1 for all 2 € N and z;; = 0 otherwise. For,
let us suppose that x is an integer optimal solution and z;,; = 1 for some 7; € N
and j # j(i1). As capacity of row ¢y is 1, necessarily x; ji;,) = 0. Further, as
j € J(N) and the capacity of column j is p(j), there exists a row iy € N such that
j = j(iz) and 4,0,y = 0. Then, capacity of row i, is 1, so there exists a column
index j = j(i3) for some row i3 such that z;,;u,) = 1 and 4,04, = 0 etc. In
this way we get a cycle of row indices (without loss of generality let this cycle be
(i1,12,...,0)) such that z; ;) = 0 and x;,¢,,,) = 1 for all [ =1,2,...,k, while

141
k+1=1. Let us define a new vector x' by setting z; ;) =1 and 2 ;; ., =0
for all [ = 1,2,...,k and z;; = 0 for all other pairs of indices. Then, since C"

fulfills (6), the cost of vector of x’ is not smaller than the cost of vector x and
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after several steps of this kind we get an optimal solution of the TP (7-10) with
the property z;; = 1 if and only if j = j(¢) for all i € N.
Now let us take the dual of the TP (7-10):

> ui+ > p(j)v; — min

i€N jeJ(N)
ui+v; > ¢;forallie N,je J(N)

We assert that vector y defined by

_J —oo forj¢ J(N)
Yi= —v; for j € J(N)

is an optimal solution of (5). First of all, since in each row i we have chosen a
critical index to be j(i), we have

Ciji) + Yi) = dije) + Y5
and we need further to show that for all other columns [ we have:
Cit + Y < Ciji) + Yii)-

For [ ¢ J(N) this inequality is trivial, for the columns of J(V) let us recall that
cij = c;. Since the chosen entries (i,j(i)) correspond to nonzero components
of the optimal solution of TP (7-10), the complementarity theorem of linear
programming ensures that u; = c;j;) — v;(;) for them and for all other entries
v; > ¢ — u;. Then we have

Cit + Y1 = Cip — U < Cip — G+ Wi = Cij) — V() = Ciji) + Yi6)

and we are done. m
Example. The proposed procedure for solving (5) will be illustrated for matrices
1 2 4 8 0 1 4 5
C=16 3 9 4landD=|2 3 9 2
7 3 8 0 73 70
Matrix C' with critical entries encircled is

1 2 @ 8
c=16 @ @ 4
@ 38 ©
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By inspection, we can choose the entries c3, co3, 31 and it is easy to see that they
fulfill (6). So we have a solution of the transportation problem with matrix

1
C'=1|6
7

o O =

and row capacities and capacity of column 1 equal 1, capacity of column 2 equal 2
given by x15 = x99 = w31 = 1 and all other z;; = 0. Now, using the complementar-
ity theorem we get one possible solution of the dual equal to u; = 3,us =8, us =7
and v; = 0,v3 = 1. Hence, a solution of our system is y = (0, —00, —1, —00)
which is easy to verify.

However, although for some special cases function j is easy to find (e.g. if
all entries in one column are critical), in general we do not know whether it is
possible to decide the existence of the function j polynomially.

6 Conclusion and open questions

As the influence of imprecisions in real systems can be quite high, interval com-
putations for max-plus algebraic problem shoud be given greater attention. For
the interval eigenvalue and eigenvector problem we propose as further research
topics for example the following questions:

e Find an efficient procedure to decide whether a given interval matrix has a
universal eigenvector or prove that this problem is NP-hard.

e For a given possible eigenvector x of an interval matrix A find the greatest
set, of matrices in A for which x is an eigenvector.

e Describe some kind of generators for the set of all possible eigenvectors of
a given interval matrix A.
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