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Abstract

The product P◦Q of graph properties P,Q is a class of all graphs having
a vertex-partition into two parts inducing subgraphs with properties P and Q,
respectively. For a graph invariant ϕ and a graph property P we define ϕ(P)
as the minimum of ϕ(F ) taken over all minimal forbidden subgraphs F of P .
An invariant of graph properties ϕ is said to be additive with respect to reducible
hereditary properties if there is a constant c such that ϕ(P ◦Q) = ϕ(P)+ϕ(Q)+c

for every pair of hereditary properties P,Q. In this paper we provide a necessary
and sufficient condition for invariants that are additive with respect to reducible
hereditary graph properties. We prove that the order of the largest tree, the chro-
matic number, the colouring number, the tree-width and some other invariants of
hereditary graph properties are of such type.
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1 Introduction

Investigating the structure of a graph G we deal with its properties, numerical charac-
teristics, usually called invariants, and other attributes. Graph are very often branded
with different attributes like outerplanar, claw-free, perfect, non-planar, 3-colourable,
3-regular, 3-connected, dense, hamiltonian, vertex-transitive, etc.; we determine their
order, size, minimum and maximum degree, chromatic number, colouring number, in-
dependence number, domination number, crossing number, etc.; they receive different
names like Petersen graph, Mycielski graphs; they are denoted by various symbols e.g.
Pn, Km,n; they are drawn as pictures . . . . All such attributes of a graph G are inter-
related each other in a mysterious way and they all together describe the object of the
investigation of graph theory: GRAPH G.

In this paper we study invariants of graph properties related to graph invariants.
More precisely, let I be the class of all finite simple graphs. A graph property is
any non-empty isomorphism-closed proper subset of I. A graph property P ⊂ I is
called hereditary, if from the fact that a graph G has the property P , it follows that
all subgraphs of G also belong to P . A property is called additive if it is closed under
taking disjoint union of graphs. The completeness of a hereditary property P , denoted
by c(P), is defined as c(P) = max{p : Kp+1 ∈ P}.

It is well-known (cf. [2, 5]) that a hereditary property P can be uniquely character-
ized in terms of maximal graphs belonging to P (i.e. maximal graphs, with respect to
subgraph partial order, possessing given property) or by the set of graphs not contained
in P . To be more accurate, the set M(n,P) of P-maximal graphs of order n is defined
as follows:

M(n,P) = {H ∈ P : |V (H)| = n and for each e ∈ E(H) H + e /∈ P}.

The set F(P) of minimal forbidden subgraphs of P is defined by:

F(P) = {H /∈ P : each proper subgraph of H belongs to P}.

For other terminology related to hereditary graph properties we follow [2].
By a graph invariant ϕ we mean any integer-valued (real-valued) function defined

on I such that ϕ(G) = ϕ(H) for each pair G,H of isomorphic graphs. In accordance
with S. Zhou [14], we say that the invariant ϕ interpolates over the class P of graphs
if for any G,H ∈ P and each integer k between ϕ(G) and ϕ(H) there exists a graph
F ∈ P such that ϕ(F ) = k. A graph invariant ϕ is called monotone if G ⊆ H implies
ϕ(G) ≤ ϕ(H). According to this definition, the maximum degree ∆, the chromatic
number χ, the choice number ch, the tree-width tw and the clique number ω are ex-
amples of monotone invariants, whereas the independence number α, the minimum
degree δ, the vertex-connectivity number κ, the edge-connectivity λ are not. Given a
graph invariant ϕ, we define the associated invariant of a property P in the following
manner:

ϕ(P) = min{ϕ(F ) : F ∈ F(P)}.
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The motivation for the investigation of invariants related to hereditary graph prop-
erties comes from extremal and chromatic graph theory. The classical Erdős-Stone-
Simonovits formula provides a relationship between the maximum number of edges in
an P-maximal graph of order n and the invariant χ(P) - the chromatic number of P
(see e.g. [13]).

The generalized colouring can be introduced as follows: Let P1,P2, . . . ,Pn be any
properties of graphs. A vertex (P1,P2, . . . ,Pn)-partition of a graph G is a partition
(V1, V2, . . . , Vn) of V (G) such that for each i = 1, 2, . . . , n the induced subgraphG[Vi]
has the property Pi. A property R = P1◦P2◦ . . . ◦Pn is defined as the set of all graphs
having a vertex (P1,P2, . . . ,Pn)-partition. If a property R can be expressed as the
product of at least two properties, then it is said to be reducible; otherwise it is called
irreducible.

We say that a graph invariant ϕ is additive with respect to reducible hereditary
properties (abbreviated by ARHP) if there exists a constant c such that for any re-
ducible property P◦Q the equality ϕ(P◦Q) = ϕ(P) + ϕ(Q) + c is valid. In [11] we
proved that the chromatic number χ is ARHP.

In this paper we present a necessary and sufficient condition for monotone graph in-
variants that are ARHP and we show that among others the order of a graph, colouring
number and tree-width are ARHP. In Section 2 we investigate fundamental properties
of graph invariants. The main results are presented in Section 3.

2 Preliminaries

A. Berger [1] proved that any reducible additive hereditary property of graphs has
infinitely many minimal forbidden graphs. But only very little is known about the
structure of F(P◦Q) even in the case, when the structure of F(P) and F(Q) is known.
Moreover, A. Farrugia proved in [6], that the recognition whether a graph belongs to
a property P◦Q (it means whether it contains a graph from F(P◦Q) as a subgraph) is
polynomial only in the simplest case : if the property P◦Q is the property “to be bipar-
tite”. Useful information on the structure of F(P◦Q) can be obtained by investigation
of graph invariants associated with a property P◦Q.

For a graph invariant ϕ we can define an associated graph invariant ϕ̂ in the fol-
lowing way:

ϕ̂(G) = max
H⊆G

ϕ(H).

Proposition 2.1 Let ϕ be a graph invariant. Then ϕ is monotone if and only if for
every graph G it holds ϕ(G) = ϕ̂(G).

Proof. It follows immediately from the definition, that if ϕ is monotone, then ϕ(G) =
ϕ̂(G). Thus, it is sufficient to prove that ϕ̂ is monotone. Let G be a graph and F be its
subgraph. Then evidently

ϕ̂(F ) = max
H⊆F

ϕ(H) ≤ max
H⊆G

ϕ(H) = ϕ̂(G).�
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An interesting and important example of such an invariant is the degeneracy num-
ber (called also Wilf-Szekeres number) δ̂ = maxH⊆G δ(H). This invariant is re-
lated to invariant colouring number, denoted col (see e.g. [7]), which is defined as
col(G) = δ̂(G) + 1. Another examples are given by Matula in [9].

The following basic statements follow immediately from the definitions.

Proposition 2.2 If P1 ⊆ Q1, P2 ⊆ Q2 are hereditary properties of graphs then
P1◦P2 ⊆ Q1◦Q2.

Proposition 2.3 If ϕ is a monotone graph invariant and P ⊆ Q are hereditary graph
properties, then ϕ(P) ≤ ϕ(Q).

A graph invariant ϕ(P) strongly depends on the features of the minimal forbidden
subgraphs. The following lemma provides a lower bound of ϕ for P-maximal graphs.
It generalizes the results from [8, 11].

Lemma 2.4 Let ϕ(G) be a monotone graph invariant satisfying ϕ(G+e) ≤ ϕ(G)+1
for any edge e from the complement of G. Then for any graph G ∈ M(n,P) with
n ≥ c(P) + 2 the following holds: ϕ(G) ≥ ϕ(P) − 1.

Proof. Since G ∈ M(n,P), according to the definition of P-maximal graphs, we
immediately have that G + e /∈ P for any e belonging to E(G). Hence, there exists
F ∈ F (P) such that F ⊆ G+ e. And therefore

ϕ(P) ≤ ϕ(F ) ≤ ϕ(G+ e) ≤ ϕ(G) + 1.

�

The next corollary summarizes some important graph invariants satisfying assump-
tions of Lemma 2.4.

Corollary 2.5 Let G ∈ M (n,P), n ≥ c(P) + 2. Then

1. χ(G) ≥ χ(P) − 1 (the chromatic number);

2. ∆(G) ≥ ∆(P) − 1 (the maximum degree);

3. ω(G) ≥ ω(P) − 1 (the clique number);

4. δ̂(G) ≥ δ̂(P) − 1;

5. κ̂(G) ≥ κ̂(P) − 1 (see [9, 14]);

6. λ̂(G) ≥ λ̂(P) − 1 (see [9, 14]);
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Now we are going to investigate ARHP invariants of graph properties. One can
rather easily see that the invariant p(G) - the order of a graph G - is related to the
completeness of a property P in the following way: c(P) = p(P ) − 2. (In the case
of additive hereditary properties we can consider the invariant π(G) - the largest tree
contained in a graph G, i.e. the order of the largest component of G, and we obtain
the same relationship.) In [3] it is proved that c(P◦Q) = c(P) + c(Q) + 1 and it
immediately implies that π∗(P◦Q) = π∗(P) + π∗(Q), where π∗(G) = π(G) − 1.

The following problem is stated in [11]:

Problem 1 For which graph invariant ϕ is it true that ϕ(P◦Q) = ϕ(P) + ϕ(Q) for
all hereditary properties P and Q?

The next simple proposition shows, that invariants which are ARHP provides, after
a small modification, a solution of the problem:

Proposition 2.6 If for some invariant ϕ there is an constant c, such that the equality
ϕ(P◦Q) = ϕ(P) + ϕ(Q) + c holds for all hereditary properties P and Q, then the
invariant ϕ∗(G) = ϕ(G) + c satisfies ϕ∗(P◦Q) = ϕ∗(P) + ϕ∗(Q) + c.

Proof. One can easily see that ϕ∗(P◦Q) = ϕ(P◦Q) + c = ϕ(P) + ϕ(Q) + 2c =
ϕ∗(P) − c + ϕ∗(Q) − c+ 2c = ϕ∗(P) + ϕ∗(Q). �

3 Main results

We are going to establish a necessary and sufficient condition for invariants that are
ARHP. First we need some notations and important lemmas. Let ϕ be a monotone
graph invariant which interpolates over I, k0 be the minimum over ϕ(G), G ∈ I and
P(ϕ,k) = {G ∈ I : ϕ(G) ≤ k + k0}.

Then the chain P(ϕ,0) ⊂ P(ϕ,1) ⊂ · · · ⊂ P(ϕ,n) ⊂ . . . of hereditary properties is
called the chain associated to ϕ.

Lemma 3.1 Let ϕ be a monotone graph invariant interpolating over I and P(ϕ,0) ⊂
P(ϕ,1) ⊂ . . . be the chain associated to ϕ. Then the following two statements are
equivalent:

(i) ϕ(P◦Q) ≥ ϕ(P) + ϕ(Q) for each hereditary properties P and Q;

(ii) P(ϕ,k+l+1) ⊂ P(ϕ,k)◦P(ϕ,l) for each non-negative integers k, l.

Proof.
(i)⇒(ii) Let us suppose that the inequality ϕ(P◦Q) ≥ ϕ(P) + ϕ(Q) is valid for ar-
bitrary hereditary properties P and Q. Let k, l be two nonnegative integers. Then,
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according to the definition of an invariant of a property, we have ϕ(P(ϕ,k)) = k + 1
and ϕ(P(ϕ,l)) = l + 1. Therefore

ϕ(P(ϕ,k)◦P(ϕ,l)) ≥ ϕ(P(ϕ,k)) + ϕ(P(ϕ,l)) = k + 1 + l + 1 = k + l + 2.

It implies that any graph G with ϕ(G) ≤ k + l + 1 belongs to P(ϕ,k)◦P(ϕ,l) and we
obtain the desired inclusion P(ϕ,k+l+1) ⊂ P(ϕ,k)◦P(ϕ,l).
(ii)⇒ (i) Assume now that the inclusion P(ϕ,k+l+1) ⊂ P(ϕ,k)◦P(ϕ,l) holds for all non-
negative integers k, l. Let P,Q be arbitrary two hereditary properties of graphs. Let
us denote by a + 1 and b + 1 the values ϕ(P) and ϕ(Q) respectively. Then evidently
P(ϕ,a) ⊂ P and P(ϕ,b) ⊂ Q. Therefore, according to our assumption, P(ϕ,a+b+1) ⊂
P(ϕ,a)◦P(ϕ,b) ⊂ P◦Q. But the previous inclusions mean that

ϕ(P◦Q) ≥ ϕ(P(ϕ,a+b+1)) = a+ b + 2 = ϕ(P) + ϕ(Q).

�

The generalized Ramsey arrow relation for graph properties have been used in the
paper [10] to prove minimal reducible bounds for the class of k-degenerate graphs.
Let us recall the definition of generalized Ramsey arrow relation: Let G,F1, F2 be
graphs and P,Q1,Q2 be graph properties. We write G → (F1, F2) if for any vertex
partition {V1, V2} of V (G) either F1 ⊂ G[V1] or F2 ⊂ G[V2]; and P → (Q1,Q2) if
for every pair of graphs F1 ∈ Q1 and F2 ∈ Q2 there exists a graph G ∈ P such that
G→ (F1, F2).

Lemma 3.2 Let ϕ be a monotone graph invariant which interpolates over I and
P(ϕ,0) ⊂ P(ϕ,1) ⊂ . . . be the chain associated to ϕ. Then the following two state-
ments are equivalent:

(i) ϕ(P◦Q) ≤ ϕ(P) + ϕ(Q) for each hereditary properties P and Q;

(ii) P(ϕ,k+l) → (P(ϕ,k),P(ϕ,l)) for each non-negative integers k, l.

Proof.
(i)⇒(ii) Let k, l be any non-negative integers. Let F and G be arbitrary graphs from
P(ϕ,k) and P(ϕ,l) respectively. Consider the properties P = −F and Q = −G (i.e. the
properties with exactly one minimal forbidden graph).

According to our assumption, ϕ(P◦Q) ≤ ϕ(P) + ϕ(Q) for any pair of hereditary
properties P,Q and therefore we obtain the inequalities:

ϕ ((−F )◦(−G)) ≤ ϕ(−F ) + ϕ(−G) = ϕ(F ) + ϕ(G) ≤ k + l.

It implies that P(ϕ,k+l) 6⊂ (−F )◦(−G) and there exists a graph H ∈ P(ϕ,k+l) such that
H → (F,G). Since integers k, l and the graphs F,H are chosen arbitrarily, we have
the desired relation P(ϕ,k+l) → (P(ϕ,k),P(ϕ,l)).
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Figure 1: Depiction of the dependencies described by Theorem 3.3

(ii)⇒ (i) Let P,Q be arbitrary hereditary properties of graphs. Let us denote by k
and l the values ϕ(P) and ϕ(Q) respectively. Then there exist graphs F1, F2 such that
F1 ∈ F(P), ϕ(F1) = k and F2 ∈ F(Q), ϕ(F2) = l.

Since we assume that P(ϕ,k+l) → (P(ϕ,k),P(ϕ,l)), there is a graph F ∈ P(ϕ,k+l)

such that F → (F1, F2). We point out that either l ≤ k or k ≤ l and therefore either
P(ϕ,k) ⊂ P(ϕ,l) or P(ϕ,l) ⊂ P(ϕ,k). Thus we obtain F /∈ P◦Q. But it means that
P(ϕ,k+l) 6⊂ P◦Q and ϕ(P◦Q) ≤ k + l = ϕ(P) + ϕ(Q). �

Combining the previous two lemmas we obtain a necessary and sufficient condition
for graph invariants that are additive with respect to reducible hereditary properties.
The condition provides a relationship between monotone invariants and the proper-
ties of their associated chains in L⊂. Figure 1 illustrates the inclusions (thick lines)
and the Ramsey arrow relations (dashed lines) described by statements (i) and (ii) of
Theorem 3.3 respectively.

Theorem 3.3 Let ϕ be a monotone graph invariant and P(ϕ,0) ⊂ P(ϕ,1) ⊂ . . . be the
chain associated to ϕ. Then ϕ is additive with respect to hereditary properties if and
only if for every non-negative integers k, l the following two conditions hold:

(i) P(ϕ,k+l+1) ⊂ P(ϕ,k)◦P(ϕ,l);

(ii) P(ϕ,k+l) → (P(ϕ,k),P(ϕ,l)).

Using the characterisation provided by the previous theorem, we can show that
some important graph invariants are ARHP.

Corollary 3.4 The order of the graph p(G) is ARHP.

Proof. Let us consider the properties Qk = {G ∈ I : p(G) ≤ k + 1}, k = 0, 1, . . . .
Then it is rather easy to see that Qk+l+1 ⊂ Qk◦Ql for each non-negative integers k, l.
Moreover, if G ∈ Qk and H ∈ Ql then obviously the complete graph K|V (G)|+|V (H)|−1
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satisfies K|V (G)|+|V (H)|−1 → (G,H). Therefore Qk+l → (Qk,Ql) and Theorem 3.3
yields that p(G) is ARHP. �

Corollary 3.5 The order of the largest tree contained in a graph G, denoted by π(G),
is ARHP.

Proof. The invariant π is associated with the chain of properties Ok = {G ∈ I :
π(G) ≤ k + 1}, k = 0, 1, . . . . The inclusions Ok+l+1 ⊂ Ok◦Ol and the relations
Ok+l → (Ok,Ol) were proved in [12] (see also [2]). Therefore Theorem 3.3 immedi-
ately implies that π(P◦Q) = π(P) + π(Q) for all hereditary properties P,Q. �

The next result was already proved in [11] using well-known Erdős-Stone-Simonovits
theorem and another arguments. We recall, that subchromatic number ψ is defined as
χ− 1.

Corollary 3.6 [11] The subchromatic number ψ is ARHP.

Proof. Let us consider the properties Ôk = {G ∈ I : ψ(G) ≤ k + 1}, k = 0, 1, . . . .
Since for any graph G the value of ψ(G) is equal to χ(G) − 1, one can easily see that
Ôk = Ok+1. Therefore we have the equations

Ôk+l+1 = Ok+l+2 = Ok+1
◦Ol+1 = Ôk◦Ôl.

It implies that the chain Ô0 ⊂ Ô1 ⊂ . . . satisfies the condition (i) of Theorem 3.3.
To prove the relation Ôk+l → (Ôk, Ôl), where k, l are arbitrary non-negative inte-

gers, let us consider two graphsG ∈ Ôk = Ok+1 andH ∈ Ôl = Ol+1. If we denote by
K

(r)
s the complete r-partite graph with the order of each partition equal to s, then there

exist positive integers n1, n2 such that G ⊂ K
(k+1)
n1

and H ⊂ K
(q+1)
n2

. Consider now
the graph K(k+l+1)

n1+n2−1. By an application of Pigeonhole principle we have, that for any

two-colouring of the vertices of K (k+l+1)
n1+n2−1, either there are at least k+1 partitions with

at least n1 vertices of the first colour or there are at least l + 1 partitions with at least
n2 vertices of the second colour. It implies that K (k+l+1)

n1+n2−1 → (K
(k+1)
n1

, K
(l+1)
n2

). But

then obviously K(k+l+1)
n1+n2−1 → (G,H). Since the graphs G,H were chosen arbitrarily,

we have Ôk+l → (Ôk, Ôl). It means that the chain Ô0 ⊂ Ô1 ⊂ . . . satisfies also the
condition (ii) of Theorem 3.3.

Hence, by an application of Theorem 3.3 we obtain that the subchromatic number
is ARHP. �

Corollary 3.7 [11] The chromatic number χ is ARHP.

Proof. Since for any graph G we have the equality χ(G) = ψ(G) + 1, Proposition 2.6
and Corollary 3.6 immediately imply, that χ is ARHP. �
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Corollary 3.8 The colouring number col is ARHP.

Proof. It was already mentioned that the colouring number is related to the invariant
δ̂. And the invariant δ̂ is associated with the chain of properties Dk = {G ∈ I :
G is k−degenerate}, k = 0, 1, . . . . The inclusions Dk+l+1 ⊂ Dk◦Dl and the relations
Dk+l → (Dk,Dl) were proved in [10] (see also [12]). Therefore Theorem 3.3 yields
that δ̂(P◦Q) = δ̂(P) + δ(Q) for all hereditary properties P,Q. By an application of
Proposition 2.6 we obtain that the colouring number is ARHP. �

Corollary 3.9 The tree-width tw is ARHP.

Proof. The invariant tree-width tw is associated with the chain of properties PT k =
{G ∈ I : G is a subgraph of a k−tree}, k = 0, 1, . . . . The inclusions PT k+l+1 ⊂
PT k◦PT l and the relations PT k+l → (PT k,PT l) were, in fact, proved in [4] (see
also [12]). Therefore Theorem 3.3 yields that tw(P◦Q) = tw(P) + tw(Q) for all
hereditary properties P,Q. �

Another importance of Theorem 3.3 is that it provides a sufficient condition for the
existence of minimal reducible bounds of degenerate hereditary additive properties of
graphs (a property is degenerate if it has at least one bipartite graph forbidden and it is
additive if it is closed under taking disjoin union). Let (La

,⊂) be the lattice of additive
hereditary properties of graphs. A property ∈ La

is called a minimal reducible bound
for a property ∈ La

if in the interval (P,R) of the lattice La
there are only irreducible

properties. The determination of minimal reducible bounds is, in general, very difficult
problem, but the following theorem, proved in [12], provides one useful method.

Theorem 3.10 Let O = P0 ⊂ P1 ⊂ P2 ⊂ · · · be a chain of additive hereditary
degenerate properties of graphs. If for arbitrary non-negative integers r, s, t, u, r +
s+ 1 = k, t+ u = k the properties Pr,Ps,Pt,Pu satisfy the following two conditions

(i) Pk ⊂ Pr◦Ps;

(ii) Pk → (Pt,Pu),

then the set of minimal reducible bounds forPk in the lattice La
is of the form BL(Pk) =

{Pp◦Pq : p+ q + 1 = k}.

Combining Theorem 3.3 and Theorem 3.10 we obtain:

Theorem 3.11 Let ϕ be an additive monotone graph invariant that is additive with
respect to hereditary properties and Pk = {G : ϕ(G) ≤ k}. If for any positive integer
k there exist a bipartite graph B ∈ Pk such that ϕ(B) > k, then the set of minimal
reducible bounds for Pk in the lattice La

is of the form BL(Pk) = {Pp◦Pq : p+q+1 =
k}.
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Let us remark that the maximum degree ∆ is not ARHP because it does not satisfies
the condition (ii) of Lemma 3.2. The set of minimal reducible bounds for the class Sk,
of graphs of maximum degree less or equal to k, is not determined even for k = 3. It
is well known, that for any graph G we have

χ(G) ≤ ch(G) ≤ col(G) ≤ ∆(G) + 1.

We proved that the chromatic number χ and the colouring number col are ARHP. We
conjecture that the choice number is ARHP too.

Conjecture 1 The choice number ch(P) is an additive invariant with respect to re-
ducible hereditary graph properties.
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