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Abstract

The purpose of this paper is to present a collection of problems that allow
students to investigate magic squares and latin squares, formulate their own
conjectures about these mathematical objects, look for arguments supporting or
disproving their conjectures and finally establish and prove mathematical asser-
tions. Each problem is completed with our commentary and/or experience from
classrooms.
Keywords: magic square, latin square, proof, classroom activity, investigation

1 Introduction and motivation

Any arrangement of natural numbers possessing more or less expressed degree of sym-
metry has attracted attention since ancient time. An example of such arrangement
is a magic square, i.e. square array consisting of natural numbers from 1 to n2, with
identical sums in all rows and columns and both diagonals.

In the mathematical classroom magic squares offer a rich source of diversified prob-
lem solving experience that range across all ability levels. The most frequent problems
concerning magic squares are those in which some of numbers are already given, and
the rest of them have to be found. The aim of this paper is to present such problems
concerning magic squares, that a high school student may feel the flavour of scientific
investigation.

We provide a collection of problems that allow students to investigate mathematical
objects, formulate their own conjectures, look for arguments supporting or disproving
their conjectures and finally establish and prove mathematical assertions. In order to
fulfill these goals we do not start with exact definitions of investigated objects, but
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we stimulate students to look for important properties that finally result in commonly
accepted definitions.

Our collection of problems consists of two parts. The first part deals with magic
squares and their basic properties. The second part is devoted to Latin squares and
their use in constructing magic squares. With each problem, we have provided ad-
ditional commentary based on classroom experience. The proposed problems need
very little knowledge as a prerequisite. However, our problems can stimulate students’
mathematical power, which is the ability to explore, conjecture, reason logically and
to use variety of mathematical methods to solve non routine problems.

We utilized this collection of problems in classrooms of 16-18 years old high school
students.

2 Magic squares

Problem 2.1 Fill in the empty cells in square arrays in figure 1 by appropriate num-
bers. Justify your decision.

2 3
5 11 10 8
9 7 6 12

14 15

16 9 22
20 21 2
7 25 13 1 19
24 5 6

4 17 10

29 2 4 13
9 20 22 18
32 25 7 3 21 23
14 16 34 30 12 5
28 15 17 19

24 33 35 8

Figure 1: Fill in the empty cells

Classroom commentary 2.1 We suggest splitting the solution of this problem into
three parts:

1. Solving the problem individually.

2. Class discussion: The students present and justify their solutions.

3. Deciding which of the proposed solutions is “the most elegant”, the best justified
and the most attractive from their point of view.

Usually more than half of students construct magic squares, but without consid-
eration of the sums on diagonals. The rest of students choose other rules. While
completing the second (the third) square array many of students revise the content of
cell in the first (the first and the second) square because they want to apply the same
rules for all three tables.

After finishing a discussion of the previous problem we propose to acquaint the
students with the history of magic squares (see [1], [2] and [6]). We suggest the teacher
should not formulate the definition of a magic square yet.
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Problem 2.2 Construct a magic square 3 × 3.

Classroom commentary 2.2 Similar to the first problem we propose to split the
solution process into three parts. Since we have not provided a definition of a magic
square yet, students utilize only a vague description of magic square given in the his-
torical note. Therefore they usually check only sums in rows and columns and do not
consider the sums on diagonals. Moreover some of them use some numbers repeat-
edly or use numbers not belonging to the set {1, 2, . . . , 9}. During the forthcoming
discussion they choose as the most attractive such square arrays with 5 in the center
and containing each of the numbers 1, 2, . . ., 9. They support their decision with the
following arguments: “It is more difficult to create such square array then the others”,
“the number 5 is in the middle of the range 1, . . . , 9 and therefore it should be in
the center of a square array”, “such a square array has 8 identical sums, which is more
than in other arrays”.

We can now define magic square of order n as a square array n×n containing each
of the numbers 1, 2, . . ., n2 and having the same sums in rows, columns and on the
two main diagonals. This common value is called magic number.

Problem 2.3 Construct a magic square of order 2.

Classroom commentary 2.3 Some students found out, that the problem has no so-
lution, very quickly. The others examined all possible arrangements, but they hesitated
to formulate the conclusion. The main goal of this problem is to show students that
the answers “there is no such square”, “the problem has no solution” are standard
answers that may appear during solving mathematical problems.

Problem 2.4 How many magic squares of order 3 exist?

Classroom commentary 2.4 Students are usually able to find several solutions with
the number 5 in the middle of the square array during the solving Problem 2.2. Many
of them also notice that many of the solutions are the same (“it is the same if you turn
it or flip it” - idea of the symmetry of a square). Students start to use process of trial
and error to find all magic square of order 3. They usually find all 8 magic squares of
order 3, but trial and error cannot prove that no other solutions exist. Students have
to use logical arguments to prove that. These arguments are vague at the beginning of
discussion e.g. “If 9 goes in one corner I can’t complete one row or column”,“5 must
be in the center cell”, etc. In order to make their arguments more decisive the students
are forced to use more exact and clear formulations.

Students together with their teacher can discuss the following solution:
The sum of the nine digits is 45. Each row and column of three adds to the same
total, this total must be 45/3 = 15. Now there are various arguments to deduce exact
position of numbers. Here is one sequence of steps:
If we write number 15 as the sum of three different natural numbers, we have the
following possibilities:
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1+9+5 2+9+4 3+8+4 4+6+5
1+8+6 2+8+5 3+7+5

2+7+6

In these sums the numbers 1, 3, 7, 9 occur 2 times, the numbers 2, 4, 6, 8 occur 3
times and the number 5 occurs 4 times. In array 3x3, the number written in arbitrary
corner of array is in three triplets, such that their sum is 15. The number written in
the middle of the array is in four triplets, such that their sum is 15 each. That means
number 5 must be in the middle of square array and numbers 2, 4, 6, 8 in the corners
of square array. Hence we observe that there are 8 possible solutions to the problem.
In fact, there is only one solution and its seven reflections and rotations (see figure 2).

2 9 4
7 5 3
6 1 8

6 7 2
1 5 9
8 3 4

8 1 6
3 5 7
4 9 2

4 3 8
9 5 1
2 7 6

4 9 2
3 5 7
8 1 6

2 7 6
9 5 1
4 3 8

6 1 8
7 5 3
2 9 4

8 3 4
1 5 9
6 7 2

Figure 2: Magic square of order 3 and its seven reflections and rotations

Problem 2.5 Can two different magic squares of the same order have different magic
numbers?

Classroom commentary 2.5 Very often the first reaction of students is: “Of course,
it is possible.” This reaction is a little bit surprising, because they determined the ex-
act value of magic number of order 3 (in Problem 2.4) which was independent of the
arrangement of numbers in magic square. In order to obtain the correct conjecture, we
provide students with a few different magic squares of the same order.1 The students
have to determine the magic number of each magic square. According to new obser-
vations and obtained results, students usually formulate the correct conjecture. The
correct conjecture is mostly formulated by students who found the value of the magic
number in the Problem 2.4 together with more or less formal proof. We present two
examples of students’ arguments:

Student’s proof 1: ”The sum of the rows of the first magic square must be equal
to its magic number multiplied by n. Similarly the sum of the rows of the second
magic square is the magic number of this square multiplied by n. If the magic number
corresponding to two different magic squares were different then both sums would be
different. But both sums consist of the same numbers and therefore must be equal.”

Student’s proof 2: ”I do it as in the Problem 2.4. I sum all the numbers in the magic
square and then I divided the obtained result by the number of rows. The obtained

1As examples we can use some famous magic squares: The Diabolic magic square of order 4 founded
in India in 1000, Dürer’s magic square of order 4 depicted in the well-known woodcut “Melencolia I”
from 1514 etc. (see e.g. [6, 2]).
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sum is always the same because it does not depend on the positions of the numbers in
the square array. Therefore the magic number is always the same, too.”

More formally we can rewrite these proofs in the following way:

Proof 1: Let us have two magic squares of the same order n and let us denote their
magic numbers by m1 and m2, respectively. Then, the sum of numbers of an arbitrary
row of the first magic square is m1 and the sum of all numbers in this magic square
is nm1. Analogously, the sum of the numbers in each row of the second magic square
is equal to m2 and the sum of all numbers in the second magic square is nm2. On
the other hand, nm1 = 1 + 2 + · · · + n2 = nm2. Therefore we have the equalities
nm1 = nm2, and m1 = m2. It follows that the magic numbers of two magic squares of
the same order are equal.

Proof 2: The sum of all numbers in a magic square of order n is 1 + 2 + · · · + (n2 −

1)+n2 =
n2(n2 + 1)

2
. As the sum of numbers in any row (column) of the magic square

is equal to a magic number M and the number of rows (columns) is equal to n we

immediately have the equality
n2(n2 + 1)

2
= nM . By an easy calculation we obtain

that the magic number of a magic square of order n is M =
n(n2 + 1)

2
.

Usually a teacher must help the students with technical details of the proofs. On
the other hand, using the previous two proofs, a teacher can explain the differences
between various proof techniques.

3 Latin and Magic Squares

Problem 3.1 Is it possible to arrange 9 saucers (3 blue, 3 yellow and 3 red) and 9
cups (3 blue, 3 yellow and 3 red) into three rows and three columns in such a way that:

1. in every row and in every column the colors of saucers are pairwise different,

2. in every row and in every column the colors of cups are pairwise different,

3. there are no two pairs of saucer and cup with the same color combination (i.e.
we cannot have a blue cup on a red saucer more than once but we can have
simultaneously a red cup on a blue saucer).

Classroom commentary 3.1 Students use various notations to record the solution
of the problem. Some of them use pictures and/or colors, some of them use more
abstract notation (see figure 3).

If no student uses number notation for recording the solution of the problem teacher
can introduce a new notation (see figure 4). Students usually grasp the meaning of the
notation very quickly.

Problem 3.2 Arrange 25 saucers and 25 cups (the saucers and cups are equally colored
with 5 colors, say 0,. . . ,4) into 5 rows and 5 columns in such a way that:

1. in every row and in every column the colors of saucers are pairwise different,
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bc bs yc rs rc ys
yc ys rc bs bc rs
rc rs bc ys yc bs

y b r
r b y
r y b
b y r
b r y
y r b

rr yy bb
by rb yr
yb br ry

bc - blue cup
yc - yellow cup cups are above it is not important

rc - red cup saucers are below whether the first
bs - blue saucer symbol denotes

ys - yellow saucer cup or saucer
rs - red saucer

a) b) c)

Figure 3: Students’ notations

0 - blue
1 - yellow
2 - red

2, 2 0, 1 1, 0
0, 0 1, 2 2, 1
1, 1 2, 0 0, 2

Figure 4: Number notations

2. in every row and in every column the colors of cups are pairwise different,

3. there are no two pairs of saucer and cup with the same color combination.

Classroom commentary 3.2 On the basis of the gained experience, the problem
with 25 saucers and cups can be solved relatively quickly (see figure 5). Students very
often discover that they can use symmetry of a square (horizontal or vertical flip - i.e.
configuration of cups and saucers differs only by a flip).

0, 4 1, 3 2, 2 3, 1 4, 0
1, 0 2, 4 3, 3 4, 2 0, 1
2, 1 3, 0 4, 4 0, 3 1, 2
3, 2 4, 1 0, 0 1, 4 2, 3
4, 3 0, 2 1, 1 2, 0 3, 4

0, 3 1, 4 2, 0 3, 1 4, 2
2, 1 3, 2 4, 3 0, 4 1, 0
4, 4 0, 0 1, 1 2, 2 3, 3
1, 2 2, 3 3, 4 4, 0 0, 1
3, 0 4, 1 0, 2 1, 3 2, 4

vertical flip horizontal flip

Figure 5: Students’ solution of Problem 3.2

Problem 3.3 Arrange 16 saucers and 16 cups (the saucers and cups are equally colored
with 4 colors, say 0,. . . ,3) into 4 rows and 4 columns in such a way that:

1. in every row and in every column the colors of saucers are pairwise different,

2. in every row and in every column the colors of cups are pairwise different,
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3. there are no two pairs of saucer and cup with the same color combination.

Classroom commentary 3.3 It is rather surprising for the students that the prob-
lem with 16 saucers and cups is not so easy. It takes quite a lot of time to find a
solution. Examples of students’ solution are in figure 6.

0, 0 2, 3 3, 1 1, 2
3, 2 1, 1 0, 3 2, 0
1, 3 3, 0 2, 2 0, 1
2, 1 0, 2 1, 0 3, 3

0, 3 1, 2 2, 1 3, 0
3, 1 2, 0 1, 3 0, 2
2, 2 3, 3 0, 0 1, 1
1, 0 0, 1 3, 2 2, 3

Figure 6: Students’ solution of Problem 3.3

Now it is a good time for the teacher to tell the students something about history
of the Problem 3.2 and Problem 3.3.2

Problem 3.4 Split the table obtained during solving Problem 3.1 into two tables.
One represents the arrangement of saucers and the second represents the arrangements
of cups. Do the same with the tables created in Problem 3.2 and Problem 3.3. Try to
describe their properties and compare them with the properties of magic squares.

Classroom commentary 3.4 The problem provides an opportunity to introduce the
concept of Latin square of order n. Students usually find out the following common
properties in splitted tables (see figure 7):

2 0 1
0 1 2
1 2 0

2 1 0
0 2 1
1 0 2

0 2 3 1
3 1 0 2
1 3 2 0
2 0 1 3

0 3 1 2
2 1 3 0
3 0 2 1
1 2 0 3

0 1 2 3 4
1 2 3 4 0
2 3 4 0 1
3 4 0 1 2
4 0 1 2 3

4 3 2 1 0
0 4 3 2 1
1 0 4 3 2
2 1 0 4 3
3 2 1 0 4

Figure 7: Splitted tables

2The person who dealt with this type of problem was Leonhard Euler in 1779. He posed the so-
called “the 36 Officer Problem”: How can a delegation of six regiments, each of which sends a colonel,
a lieutenant-colonel, a major, a captain, a lieutenant, and a sub-lieutenant be arranged in a regular
array such that no row or column duplicates a rank or a regiment? [5]

Surprisingly, there exist no such arrangement. Euler conjectured that this problem has no solution
for n2 officers, where n = 4k + 2 for k = 0, 1, 2, . . .. The exact solution was found in 1959. It was
proved that Euler’s conjecture is valid only for k = 0, 1. For all k > 1, such an arrangement exists.
More information can be found in [4].
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• The square array contains numbers from 0 to 2 (numbers from 0 to 3, or numbers
from 0 to 4 if students work with tables created in Problem 3.3 or Problem 3.2 ).

• Each number in the square array occurs exactly once in each row and exactly
once in each column.

• The sum of each row and column is the same.

• The sum of each row and column is equal to 3 (to 6, or to 10).

Now we define Latin square of order n as a square array n × n containing each of
the numbers 0, 1, . . . , n−1 in such a way, that each number occurs exactly once in each
row and exactly once in each column (see figure 8).

0 1 2 . . . n − 1 n
1 2 3 . . . n 0
...

...
... . . .

...
...

n − 1 n 0 . . . n − 3 n − 2
n 0 1 . . . n − 2 n − 1

Figure 8: A Latin square of order n

We introduce the following operations with Latin squares:

• Addition of a constant a; every element x of a Latin square is replaced with the
number a + x, (see figure 9)

5 +
0 2 1
2 1 0
1 0 2

=
5 7 6
7 6 5
6 5 7

Figure 9: Addition of a constant

• Multiplication by a constant a; every element x of a Latin square is replaced with
the number a × x, (see figure 10)

4 ×

0 1 2 3
2 3 0 1
3 2 1 0
1 0 3 2

=

0 4 8 12
8 12 0 4
12 8 4 0
4 0 12 8

Figure 10: Multiplication by a constant

• The sum of two Latin squares of the same order (or square arrays, which were
created from Latin squares in terms of the operations introduced above), (see
figure 11); each cell of the resulting square array contains the sum of the elements
of the corresponding cells of the summands
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0 1 2 3
2 3 0 1
3 2 1 0
1 0 3 2

+

0 3 1 2
2 1 3 0
3 0 2 1
1 2 0 3

=

0 4 3 5
4 4 3 1
6 2 3 1
2 2 3 5

Figure 11: Sum of square arrays

Problem 3.5 Take square arrays obtained from the solution of Problem 3.4. Apply
the operations described above to the obtained square arrays (one example is in fig-
ure 12) and investigate the properties of the resulting tables. What can be said about
the sums of the numbers in the rows and columns of the new tables?

2 +
0 2 1
2 1 0
1 0 2

+ 4 ×
1 2 0
0 1 2
2 0 1

Figure 12: Combining operations

Classroom commentary 3.5 One can easily observe that an addition of a constant
and a multiplication by a constant preserve constant sum in the rows and columns.
On the other hand, it is not so obvious that a combination of all three introduced
operations preserves row and column sums. Therefore we can ask students to try to
find a counterexample. Usually some students claim that even the repeated applications
of these operations (in an arbitrary order) leads to a square array that has the same
sum in all its rows and columns. Hence we can ask them to prove this assertion. The
proof can look as follows: “If we add a constant c to a Latin square of order n, then
the sums in each row (column) increase by nc and therefore they remain equal to each
other. Similarly, if we multiple a Latin square of order n by a constant c then the sum
in each row (column) increases c times and the claim is again valid. When we sum
two square arrays, one with row/column sums equal to a and the second one with the
row/column sums equal to b, then by an easy application of associative law we obtain
that the row/column sums in the resulting square array are equal to a+b. Finally, if we
combine all three operation, then by repeated applications of the arguments mentioned
above we get that the sums in the all rows and column of the resulting square array
have the same value.”

Problem 3.6 Apply the described operations with the pair of Latin squares of order
3 in such way that

a) the biggest number in the resulting table is 9,

b) all the numbers in the resulting table are pairwise different,

c) all the numbers in the resulting table are pairwise different and the biggest num-
ber in the table is 9.



10 IM Preprint series A, No. 1/2006

Classroom commentary 3.6 Students usually add the number 7 to a Latin square
of order 3 and they get the right table in part a). Other frequent solution is multiplying
a Latin square of order 3 by the number 4 and adding 1. Part b) is more difficult. The
following assertion appeared frequently: “We need to multiply one square array with
quite big number to get right solution, I tried it with number 100.”(see figure 13)

100 ×
0 1 2
1 2 0
2 0 1

+
0 2 1
1 0 2
2 1 0

=
0 102 201

101 200 2
202 1 100

Figure 13: A student’s solution of Problem 3.6 b)

I asked them the question: “Can we use a smaller number?”. Then we got a solution
using the number 5 (see figure 14) and later the number 3 (see figure 15). We also
showed that for number 2 we cannot obtain different numbers in the resulting table.

5 ×
0 1 2
1 2 0
2 0 1

+
0 2 1
1 0 2
2 1 0

=
0 7 11
6 10 2
12 1 5

Figure 14: 2nd student’s solution of Problem 3.6 b)

3 ×
0 1 2
1 2 0
2 0 1

+
0 2 1
1 0 2
2 1 0

=
0 5 7
4 6 2
8 1 3

Figure 15: 3rd student’s solution of Problem 3.6 b)

Students solve the part c) using the resulting table in figure 15 and adding the
number 1 to the table.

Problem 3.7 Produce a magic square of order 3 from two Latin squares created in
Problem 3.4 by the described operations. Can you create a magic square from arbitrary
two Latin squares?

Classroom commentary 3.7 The solution of the problem should result in the fol-
lowing finding: If we want to get a magic square, generating Latin squares must have
the property that not only the sum of each row and column is the same, but also the
sum of two diagonals is the same. For example, students do not obtain a magic square
of order 3 in figure 16 because the two diagonal sums are not equal to 3 (one is equal
to 6 and the other is equal to 0). In figure 17 each diagonal sum is equal to 3 and
students get a magic square.

Problem 3.8 Consider pairs of Latin squares of order 4 that were created in Prob-
lem 3.4. Apply the described operations to these squares in such a way that
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3 ×
0 1 2
1 2 0
2 0 1

+
0 2 1
1 0 2
2 1 0

+ 1 =
1 6 8
5 7 3
9 2 4

Figure 16: A square array that is not a magic square

3 ×
1 0 2
2 1 0
0 2 1

+
2 0 1
0 1 2
1 2 0

+ 1 =
6 1 8
7 5 3
2 9 4

Figure 17: Magic square of order 3

a) the biggest number in the resulting table of order 4 is 16,

b) all the numbers in the resulting table are pairwise different,

c) all the numbers in the resulting table are pairwise different and the biggest num-
ber in the table of order 4 is 16,

d) the resulting table is a magic square of order 4.

Classroom commentary 3.8 This problem students solve individually. Sometimes
they have to modify their Latin squares in order to be able to construct a magic square
(sum on each diagonal must be equal to 6). A solution for magic square of order 4 is
depicted in figure 18.

4 ×

0 1 2 3
2 3 0 1
3 2 1 0
1 0 3 2

+

0 3 1 2
2 1 3 0
3 0 2 1
1 2 0 3

+ 1 =

1 8 10 15
11 14 4 5
16 9 7 2
6 3 13 12

Figure 18: Magic square of order 4

Problem 3.9 Consider pairs of Latin squares of order 5 that were created in Prob-
lem 3.4. Apply the described operations to these squares in such a way that the
resulting table is a magic square of order 5.

Classroom commentary 3.9 As in the previous problem, students usually had to
modify their Latin square in order to be able to construct magic square.

4 Conclusion

Mathematics classroom should be a place where students learn to value mathemat-
ics, to communicate their ideas, become confident in their own mathematical abilities,
learn to make, refine and explore conjectures and use a variety of reasoning to confirm
or disprove those conjectures. All students can feel the thrill of success through explo-
ration and hands-on experimentation [3]. The activities concerning magic squares are
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an interesting outlet for achieving these goals. Our experiences have shown that the
problems presented in this paper challenge high school students while reinforcing their
“mathematical power”.
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