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Abstract. A cyclic colouring of a plane graph G embedded in a surface
is a vertex colouring of G in which any two distinct vertices sharing a face
receive distinct colours. The cyclic chromatic number x.(G) of G is the
smallest number of colours in a cyclic colouring of G. It is conjectured
that x.(G) < L%A*(G)J for any planar graph G with a maximum face size
A*(G). Sanders and Zhao in [3] proved that x.(G) < [2A*(G)] for any
planar graph G. Their proof uses the Discharging Method and a knowl-
edge of structural properties of a hypothetical minimal counterexample.
In the present paper Lemma 2.5 of [3] about structural properties of a
hypothetical minimal counterexample is generalized.

1 Introduction

A cyclic colouring of a plane graph G is a such colouring of vertices of GG
that whenever two distinct vertices share a face, they receive distinct colours.
The cyclic chromatic number x.(G) of the graph G is the minimum number
of colours in a cyclic colouring of G.

This invariant was introduced (in the dual form) by Ore and Plummer [2].
First upper bound 2A*(G) (where A*(G) denotes a maximum face size of a graph
G) was given by Ore and Plummer [2], later it was improved to [2A*(G)] by
Borodin, Sanders and Zhao [1] and the best known bound [2A*(G)] is due to
Sanders and Zhao [3].

On the other hand, there is an infinite family of plane graphs G satisfying
Xe(G) = [3A%(G)]. It is conjectured that x.(G) < [2A*(G)] for any plane
graph G.

Upper bounds for the cyclic chromatic number are so far all based on the
well-known Discharging Method and it is hard to imagine that it will be oth-
erwise for possible future improvements. Discharging Method is closely related
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to information on structural properties of a hypothetical minimal counterexam-
ple, namely to reducible configurations (those which cannot appear in a minimal
counterexample). In this article some reducible configurations are established by

considering cyclic colourings of a plane graph G with [(1 + g)A*(G)-‘ colours,

where 1 < 2 < 2,
2 q 3

2 Preliminaries

Let G = (V, E, F) be a simple 2-connected plane graph. The degree deg(x)
of x € V U F is the number of edges incident with x. A vertex of degree k is
a k-vertex, a vertex of degree at least k is a (k+)-vertez, a face of degree k is a k-
face. By V(z) we denote the set of all vertices incident with x € E'U F'; similarly,
F(y) is the set of all faces incident withy € VUE. If e € E, F(e) = {f1, f2} and
deg(f1) < deg(f2), the pair (deg(fi1),deg(f2)) is called the type of e. A (dy,ds)-
neighbour of a vertex x is a vertex y such that the edge xy is of type (di,ds).
Let v be a vertex of degree n. Consider a sequence (fi, ..., f,) of faces incident
with v in a cyclic order around v (there are altogether 2n such sequences) and
the sequence D = (dy,...,d,) in which d; = deg(f;) for ¢ € [1,n]. The sequence D
is called the type of the vertex v provided that it is the lexicographical minimum
of the set of all such sequences corresponding to v. A vertex x; is cyclically
adjacent to a vertex xy # xq if there is a face f with xy, 29 € V(f). The cyclic
neighbourhood N.(x) of a vertex x is the set of all vertices that are cyclically
adjacent to z and the closed cyclic neighbourhood of x is N.(z) := N.(z) U {x}.
The cyclic degree of x is cd(x) := | N(x)|. A cyclic colouring ¢ : V' — C'is called
a k-colouring, if |C| = k (where elements of C' are called colours of the mapping
).

Let p, q be positive integers, % < §. Suppose that there is a plane graph G of
maximum face size A*(G) = d which has no cyclic k-colouring, k = [(1+ £) - d].
Let such a graph with the smallest possible number of edges be called a (d, k)-
minimal graph. A (d, k)-reducible configuration is a configuration that does not
appear in any (d, k)-minimal graph.

The following reducibility lemma is a standard observation in the context of
cyclic k-colourings (for appropriate k& and any d), cf. [3]:

Lemma 1 1. A (d, k)-minimal graph is 2-connected.
2. An edge of type (dy,ds) with dy + dy < d+ 2 is (d, k)-reducible.
3. A vertex x with cd(z) < k is (d, k)-reducible.

Sanders and Zhao in [3] defined a common vertex of two faces as follows: Given
two faces f1, fo of degree at least 4 of a plane graph G, let a common vertex of fi
and fo be a vertex incident with each of them which is either a vertex of degree
2, a vertex of degree 3 incident with a face of degree 3, or a vertex of degree 4



J. Zlamalovéa: On cyclic chromatic number of plane graphs 3

incident with two faces of degree 3. This concept of a common vertex is different
from the conventional one. Note that if v is a common vertex of f; and fs, then
all of the vertices cyclically adjacent to v are incident with either f; or fs. Also,
let a common vertex be a vertex which is a common vertex of two faces of G. An
uncommon vertezr is one which is not common.

3 Results

The following lemma generalizes Lemma 2.5 of [3]:

Lemma 2 Let p, q be positive integers such that % < § < %, let G be a plane graph
with A*(G) = d. Let fi, fa, f5 be three faces of the graph G, let n; ; be the number
of common vertices of f; and f;. Also, let n := 1 if there is a vertex incident with
all of f1, fa, f3, elseletn:=0. Ifni o > 1 andnys+nes+n>d—1+ %@, then

this configuration is (d, [(1 +5)- d—‘ )-reducible.

Proof. Suppose that G is a (d, [(1 + §) . d-‘ )-minimal graph with faces f1, fo, f3
as in the statement. Let x be a common vertex of f; and f5. Let H be G with an
edge incident with x contracted. Since A*(H) < d, H has a cyclic {(1 +5- d—‘_

colouring.

Without loss of generality, there is a common vertex y of f; and f; whose
colour does not appear in fy. (Note that by definition of a common vertex, it
is clear that = # y.) This is true, for otherwise, for i € {1,2}, each of the n, 3
colours on the common vertices of f; and f3 appears on the border of f3_; and
thus appear twice in N.(z). Note that cd(z) < 2d — 2 and thus z sees at most
2d—2— (N3 +np3) <2 —2+1—d+ 214 1=(1+2).d-1 < [(Hg)-cﬂ
colours. Thus x may be coloured by a colour different from its cyclic neighbours,
contradicting the minimality of G.

Suppose there is also a common vertex z of f; and f;3 whose colour does
not appear in f;. Now there are at least 2¢ colours which do not appear in f;.
Each of those colours appears in f;, or else if ¢ is a colour in neither f; nor f3,
then recolouring = with the colour on y and recolouring y with ¢ gives a cyclic
[(1 + ’5’) . d-‘ -colouring of G. Symmetrically, arguing with z in place of y, each of

those colours appears in fy. Thus, at most d(1 — §) colours appear in f, which

do not appear in fi. It follows that z sees at most d +d(1 — £) < [(1 +5)- dw

colours. As before,  may be coloured to give a cyclic [(1 + §) . dw -colouring of

G.
The final case is to suppose that each of the ny 3 colours appearing at the com-
mon vertices of fs and f3 also appears in f;. Clearly, none of these colours appears
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among the common vertices of f; and fo. Thus, cd(y) < 2d — [V (f1) NV (f3)],
and since x is uncoloured, including the colour on y itself, y sees at most 2d —

V()N V(fs)|—ne3—1< 2d+1—d—|—%—1 = (1+§)-d—% < [(1+§)-d-‘
colours. Thus x may be coloured with the colour on y, and then y may be re-

coloured with a colour it does not see to give a cyclic [(1 + %) . dw -colouring of

G. n

Lemma 3 Let p,q be positive integers such that % < §, let G be a plane graph
with A*(G) = d. Let xy € V(G) be a vertex of type (3,d,dy,d), where d; <
2 {%ﬂ —d+4, or of type (3,d,d). Let x1,x9 be neighbours of xq incident with
a 3-face h. Let f; # h be the face incident with the edge xoz;, i € {1,2} and let

fs # h be the face incident with the edge x1x2. Let n, ; be the number of common
vertices of f; and f;. If n13 > 1 and there is a common vertex v of faces fo and fs

with cd(v) < {(1 +5)- d-‘ , then this configuration is (d, [(1 +£)- d—‘ )-reducible.

Proof. Suppose that G is a (d, {(1 + §) . dw )-minimal graph with vertices g, x1,
To, v and faces f1, fo, f3 as in the statement. Let H be G with an edge incident
with v contracted. Since A*(H) < d, H has a cyclic {(1 +5)- dw -colouring ¢ :
V(H) — C. This colouring will be used to find a cyclic colouring ¢ : V(G) — C.
If not stated explicitly otherwise, we put ¥ (u) = ¢(u) for any u € V(G) — {v}.
If there is a colour ¢ € C' — ¢(N(v)), then we put ¢(v) = ¢, else v sees every
colour exactly once. If there is i € {0,1} and a colour ¢ € C'— ¢(N(x;)), then we

put ¥ (z;) = ¢ and ¥(v) = @(x;), else both xg, x; see every colour at least once.
Then, because of the structure of this configuration, it holds:

1. If deg(zo) = 4, then there are at least 2 {%ﬂ —1 colours on at most d+d; —5
vertices. Hence 2 [%ﬂ —1<d+d;—>5and?2 {%ﬂ +4 —d < dy, a contradiction.

2. If deg(xp) = 3, then there are at least 2 P’—qﬂ — 2 colours on at most d — 3

2
a contradiction. ]

vertices. Hence 2 {%i-‘ — 2 < d— 3 and, since % < g, d+1<2 [%i-‘ +1 < d,

4 An application

Lemma 4 The configuration C; of Fig. i, i € {1,2} (where encircled numbers
represent degrees of corresponding vertices and vertices without degree specifica-
tion are of an arbitrary degree) is (8, 13)-reducible.

Proof. Let G be a (8,13)-minimal graph. Let G contain a configuration Cj,
i € {1,2}. Let H be G with an edge incident with v contracted. Since A*(H) < 8,
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Fig. 1: deg(f,)="7

H has a cyclic 13-colouring ¢ : V(H) — C. This colouring will be used to find
a cyclic colouring ¢ : V(G) — C. If not stated explicitly otherwise, we put
¥(u) = ¢(u) for any u € V(G) — {v}.

If there is a colour ¢ € C'— (N (v)), then we put 1(v) = ¢, else v sees every
colour exactly once. If there is a colour ¢ € C' — (N (z1)), then we put ¥(z,) = ¢
and (v) = p(x1), else also x1 sees every colour exactly once.

Case i = 1: Then there is either a colour ¢ € C' — p(N(z3)) and we put
¥(z2) = ¢ and P(v) = p(x2) or a colour ¢ € C'— p(N(t)) and we put (t) = ¢
and ¥ (v) = ¢(1). )

Case i = 2: Then there is a colour ¢ € C' — ¢(N(z3)) and we put ¥ (z3) = ¢

and Y(v) = ().
Theorem 5 Let H be a plane graph with A*(H) = 8. Then x.(H) < 13.

Proof. By contradiction. Let G be a (8,13)-minimal graph. For any vertex
v € V(GQ) let CO.(U) =1- degT(”) + D ferw) @ be the initial ch_ar.ge of ver-
tex v. Then, using Euler’s formula and the handshaking lemma, it is easy to
see that ) ., co(v) = 2. If a vertex v is of type (di,...,d,), then co(v) =
Y(dy, .. dy) = 134> dii. Clearly, if 7 is a permutation of the set {1,--- ,n},
then '7<d7r(1)7 c. ,dﬂ(n)) = ’y(dl, . ,dn)

A vertex v € V(G) is positive if co(v) > 0, otherwise it is nonpositive. For a
vertex v € V let n(v) denote the number of all positive neighbours of v and let
n4+ (v) denote the number of all neighbours of v of degree at least 4.

Note that because of Lemma 1.3 it holds that 6(G) > 3.

Now let us state the following redistribution rules leading from cg to ¢5 (where
the coordinate ¢ of a rule Ri means that Ri is used when passing from ¢;_; to ¢;):
R1 A vertex z of type (4,7,8) with nyy(x) = 0 sends an amount c¢y(z) to its
(4, 7)-neighbour.

R2 A (4+)—vertex v sends an amount —cy(x) to its neighbour z of type (4,7, 8).
R3 A (4+)—vertex v sends an amount —cs(x) = —co(x) to its (8, 8)-neighbour «
of type (3,8,38).

R4 A (5+)—vertex v sends an amount —cz(z) to its (3,8)-neighbour x of type
(3,8,8) with ¢3(z) > 0.

R5 A 4-vertex v sends an amount CT:‘((;J)) to its (3, 8)-neighbour z of type (3,8, 8)
with ¢4(x) > 0.

Let v € V(G), denote n = deg(v) and let us show that c¢5(v) < 0, which
contradicts Euler’s formula.
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(1) If n > 6, then ¢5(v) < co(v)+n- 7(388) 1-5+% +16+1 =1-3<0.

(2) If n =5, then ¢5(v) < co(v) +5- 55 <7(38388) :—igo.

(3) If n = 4, then ¢y(v) < ~(3,8,3, 8) = —=+ and ¢ (v ) = ¢o(v). Then if
n(v) = 0, then c5(v) = co(v) < 0, else some of rules R2, R3, R5 was applied on
v. Clearly, if R5 was used, then 05(?}) = 0.

(31) If R2, but not R3 (and R5) was applied on v, then c5(v) = ca(v) <
co(v) +4-27(4,7,8) <7(3,7,4,8) + 8+ 5s = — 0= < 0.

(32) If R3, but not R2 (and R5) was applied on v, then, c5(v) = c3(v) <
max{7(3,8,8,8) +2- 15,7(8,8,8,8) +4- L} = —1 <0.

(33) If both R2 and R3 (but not R5) were used for v, then c5(v) = c3(v) <

co(v)+3 5 +2- % <7(4,7,8,8)+ 2 =—-=L <0.

(4) If n =3, then either c5( ) = co(v) < 0orco(v) > 0 and v is either of type
(4,7,8) or of type (3,8,8).

(41) Let v be of type (4,7,8). If nyy(v) > 0, then, by R2, ¢5(v) = ca(v) = 0.
Otherwise ¢5(v) = ¢;(v) = 0 by R1 and configuration C}.

(42) Now let v be of type (3,8, 8). If its (8, 8)-neighbour is of degree at least 4
or at least one of its (3, 8)-neighbours is of degree at least 5, then, by R3 or R4, we
have ¢5(v) = ¢4(v) < 0. Otherwise, by Lemma 3, at least one of (3, 8)-neighbours
of v is of degree 4. Denote this vertex as z and denote the (3, 8)-neighbour of v
distinct from z as y.

(421) If also deg(y) = 4, then, by Lemma 3, at least one of y, z is not of
type (3,8, 3,8). Therefore its charge after R4 is at most max{~(3,8,4,8) +2-2-
=,7(3,8,5,8),7(3,8,6,8),7(3,8,7,8) +2-2- =,7(3,8,8,8) + 2 15} = —% and
s0 ¢5(v) < 55— & < 0.

(422) If deg(y) = 3, then z is not of type (3,8,5—,8) (by Lemma 3). Then,
by rules, Lemma 3 and configuration Cy ¢4(2) < max{v(3,8,6,8),7(3,8,7,8) +

2-2. 5677(3787878) 12}___ and so C5( )S L —§~254§O m
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