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Abstract. A cyclic colouring of a plane graph G embedded in a surface
is a vertex colouring of G in which any two distinct vertices sharing a face
receive distinct colours. The cyclic chromatic number χc(G) of G is the
smallest number of colours in a cyclic colouring of G. It is conjectured
that χc(G) ≤

⌊

3
2∆∗(G)

⌋

for any planar graph G with a maximum face size
∆∗(G). Sanders and Zhao in [3] proved that χc(G) ≤

⌈

5
3∆∗(G)

⌉

for any
planar graph G. Their proof uses the Discharging Method and a knowl-
edge of structural properties of a hypothetical minimal counterexample.
In the present paper Lemma 2.5 of [3] about structural properties of a
hypothetical minimal counterexample is generalized.

1 Introduction

A cyclic colouring of a plane graph G is a such colouring of vertices of G
that whenever two distinct vertices share a face, they receive distinct colours.
The cyclic chromatic number χc(G) of the graph G is the minimum number
of colours in a cyclic colouring of G.

This invariant was introduced (in the dual form) by Ore and Plummer [2].
First upper bound 2∆∗(G) (where ∆∗(G) denotes a maximum face size of a graph
G) was given by Ore and Plummer [2], later it was improved to

⌈

9
5
∆∗(G)

⌉

by
Borodin, Sanders and Zhao [1] and the best known bound

⌈

5
3
∆∗(G)

⌉

is due to
Sanders and Zhao [3].

On the other hand, there is an infinite family of plane graphs G satisfying
χc(G) = b3

2
∆∗(G)c. It is conjectured that χc(G) ≤ b3

2
∆∗(G)c for any plane

graph G.
Upper bounds for the cyclic chromatic number are so far all based on the

well-known Discharging Method and it is hard to imagine that it will be oth-
erwise for possible future improvements. Discharging Method is closely related
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to information on structural properties of a hypothetical minimal counterexam-
ple, namely to reducible configurations (those which cannot appear in a minimal
counterexample). In this article some reducible configurations are established by

considering cyclic colourings of a plane graph G with
⌈

(1 + p

q
)∆∗(G)

⌉

colours,

where 1
2
< p

q
≤ 2

3
.

2 Preliminaries

Let G = (V,E, F ) be a simple 2-connected plane graph. The degree deg(x)
of x ∈ V ∪ F is the number of edges incident with x. A vertex of degree k is
a k-vertex, a vertex of degree at least k is a (k+)-vertex, a face of degree k is a k-
face. By V (x) we denote the set of all vertices incident with x ∈ E∪F ; similarly,
F (y) is the set of all faces incident with y ∈ V ∪E. If e ∈ E, F (e) = {f1, f2} and
deg(f1) ≤ deg(f2), the pair (deg(f1), deg(f2)) is called the type of e. A (d1, d2)-
neighbour of a vertex x is a vertex y such that the edge xy is of type (d1, d2).
Let v be a vertex of degree n. Consider a sequence (f1, . . . , fn) of faces incident
with v in a cyclic order around v (there are altogether 2n such sequences) and
the sequenceD = (d1, . . . , dn) in which di = deg(fi) for i ∈ [1, n]. The sequenceD
is called the type of the vertex v provided that it is the lexicographical minimum
of the set of all such sequences corresponding to v. A vertex x1 is cyclically
adjacent to a vertex x2 6= x1 if there is a face f with x1, x2 ∈ V (f). The cyclic
neighbourhood Nc(x) of a vertex x is the set of all vertices that are cyclically
adjacent to x and the closed cyclic neighbourhood of x is N̄c(x) := Nc(x) ∪ {x}.
The cyclic degree of x is cd(x) := |Nc(x)|. A cyclic colouring ϕ : V → C is called
a k-colouring, if |C| = k (where elements of C are called colours of the mapping
ϕ).

Let p, q be positive integers, 1
2
≤ p

q
. Suppose that there is a plane graph G of

maximum face size ∆∗(G) = d which has no cyclic k-colouring, k = d(1 + p

q
) · de.

Let such a graph with the smallest possible number of edges be called a (d, k)-
minimal graph. A (d, k)-reducible configuration is a configuration that does not
appear in any (d, k)-minimal graph.

The following reducibility lemma is a standard observation in the context of
cyclic k-colourings (for appropriate k and any d), cf. [3]:

Lemma 1 1. A (d, k)-minimal graph is 2-connected.
2. An edge of type (d1, d2) with d1 + d2 ≤ d+ 2 is (d, k)-reducible.
3. A vertex x with cd(x) < k is (d, k)-reducible.

Sanders and Zhao in [3] defined a common vertex of two faces as follows: Given
two faces f1, f2 of degree at least 4 of a plane graph G, let a common vertex of f1

and f2 be a vertex incident with each of them which is either a vertex of degree
2, a vertex of degree 3 incident with a face of degree 3, or a vertex of degree 4
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incident with two faces of degree 3. This concept of a common vertex is different
from the conventional one. Note that if v is a common vertex of f1 and f2, then
all of the vertices cyclically adjacent to v are incident with either f1 or f2. Also,
let a common vertex be a vertex which is a common vertex of two faces of G. An
uncommon vertex is one which is not common.

3 Results

The following lemma generalizes Lemma 2.5 of [3]:

Lemma 2 Let p, q be positive integers such that 1
2
< p

q
≤ 2

3
, let G be a plane graph

with ∆∗(G) = d. Let f1, f2, f3 be three faces of the graph G, let ni,j be the number
of common vertices of fi and fj. Also, let n := 1 if there is a vertex incident with
all of f1, f2, f3, else let n := 0. If n1,2 ≥ 1 and n1,3 +n2,3 +n ≥ d− 1+ 1−dp

q
, then

this configuration is (d,
⌈

(1 + p

q
) · d

⌉

)-reducible.

Proof. Suppose that G is a (d,
⌈

(1 + p

q
) · d

⌉

)-minimal graph with faces f1, f2, f3

as in the statement. Let x be a common vertex of f1 and f2. Let H be G with an

edge incident with x contracted. Since ∆∗(H) ≤ d, H has a cyclic
⌈

(1 + p

q
) · d

⌉

-

colouring.
Without loss of generality, there is a common vertex y of f1 and f3 whose

colour does not appear in f2. (Note that by definition of a common vertex, it
is clear that x 6= y.) This is true, for otherwise, for i ∈ {1, 2}, each of the ni,3

colours on the common vertices of fi and f3 appears on the border of f3−i and
thus appear twice in Nc(x). Note that cd(x) ≤ 2d − 2 and thus x sees at most

2d− 2− (n1,3 + n2,3) ≤ 2d− 2 + 1− d+ dp−1
q

+ 1 = (1 + p

q
) · d− 1

q
<

⌈

(1 + p

q
) · d

⌉

colours. Thus x may be coloured by a colour different from its cyclic neighbours,
contradicting the minimality of G.

Suppose there is also a common vertex z of f2 and f3 whose colour does
not appear in f1. Now there are at least pd

q
colours which do not appear in f3.

Each of those colours appears in f1, or else if c is a colour in neither f1 nor f3,
then recolouring x with the colour on y and recolouring y with c gives a cyclic
⌈

(1 + p

q
) · d

⌉

-colouring of G. Symmetrically, arguing with z in place of y, each of

those colours appears in f2. Thus, at most d(1 − p

q
) colours appear in f2 which

do not appear in f1. It follows that x sees at most d + d(1 − p

q
) <

⌈

(1 + p

q
) · d

⌉

colours. As before, x may be coloured to give a cyclic
⌈

(1 + p

q
) · d

⌉

-colouring of

G.
The final case is to suppose that each of the n2,3 colours appearing at the com-

mon vertices of f2 and f3 also appears in f1. Clearly, none of these colours appears
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among the common vertices of f1 and f2. Thus, cd(y) ≤ 2d − |V (f1) ∩ V (f3)|,
and since x is uncoloured, including the colour on y itself, y sees at most 2d −

|V (f1) ∩ V (f3)| −n2,3 − 1 ≤ 2d+1− d+ dp−1
q

− 1 = (1+ p

q
) · d− 1

q
<

⌈

(1 + p

q
) · d

⌉

colours. Thus x may be coloured with the colour on y, and then y may be re-

coloured with a colour it does not see to give a cyclic
⌈

(1 + p

q
) · d

⌉

-colouring of

G.

Lemma 3 Let p, q be positive integers such that 1
2
< p

q
, let G be a plane graph

with ∆∗(G) = d. Let x0 ∈ V (G) be a vertex of type (3, d, d1, d), where d1 <

2
⌈

pd

q

⌉

− d + 4, or of type (3, d, d). Let x1, x2 be neighbours of x0 incident with

a 3-face h. Let fi 6= h be the face incident with the edge x0xi, i ∈ {1, 2} and let
f3 6= h be the face incident with the edge x1x2. Let ni,j be the number of common
vertices of fi and fj. If n1,3 ≥ 1 and there is a common vertex v of faces f2 and f3

with cd(v) ≤
⌈

(1 + p

q
) · d

⌉

, then this configuration is (d,
⌈

(1 + p

q
) · d

⌉

)-reducible.

Proof. Suppose that G is a (d,
⌈

(1 + p

q
) · d

⌉

)-minimal graph with vertices x0, x1,

x2, v and faces f1, f2, f3 as in the statement. Let H be G with an edge incident

with v contracted. Since ∆∗(H) ≤ d, H has a cyclic
⌈

(1 + p

q
) · d

⌉

-colouring ϕ :

V (H) → C. This colouring will be used to find a cyclic colouring ψ : V (G) → C.
If not stated explicitly otherwise, we put ψ(u) = ϕ(u) for any u ∈ V (G) − {v}.

If there is a colour c ∈ C − ϕ(N(v)), then we put ψ(v) = c, else v sees every
colour exactly once. If there is i ∈ {0, 1} and a colour c ∈ C−ϕ(N̄(xi)), then we
put ψ(xi) = c and ψ(v) = ϕ(xi), else both x0, x1 see every colour at least once.
Then, because of the structure of this configuration, it holds:

1. If deg(x0) = 4, then there are at least 2
⌈

pd

q

⌉

−1 colours on at most d+d1−5

vertices. Hence 2
⌈

pd

q

⌉

− 1 ≤ d+ d1 − 5 and 2
⌈

pd

q

⌉

+ 4− d ≤ d1, a contradiction.

2. If deg(x0) = 3, then there are at least 2
⌈

pd

q

⌉

− 2 colours on at most d− 3

vertices. Hence 2
⌈

pd

q

⌉

− 2 ≤ d − 3 and, since 1
2
< p

q
, d + 1 < 2

⌈

pd

q

⌉

+ 1 ≤ d,

a contradiction.

4 An application

Lemma 4 The configuration Ci of Fig. i, i ∈ {1, 2} (where encircled numbers
represent degrees of corresponding vertices and vertices without degree specifica-
tion are of an arbitrary degree) is (8, 13)-reducible.

Proof. Let G be a (8, 13)-minimal graph. Let G contain a configuration Ci,
i ∈ {1, 2}. LetH be G with an edge incident with v contracted. Since ∆∗(H) ≤ 8,
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H has a cyclic 13-colouring ϕ : V (H) → C. This colouring will be used to find
a cyclic colouring ψ : V (G) → C. If not stated explicitly otherwise, we put
ψ(u) = ϕ(u) for any u ∈ V (G) − {v}.

If there is a colour c ∈ C − ϕ(N(v)), then we put ψ(v) = c, else v sees every
colour exactly once. If there is a colour c ∈ C−ϕ(N̄(x1)), then we put ψ(x1) = c

and ψ(v) = ϕ(x1), else also x1 sees every colour exactly once.
Case i = 1: Then there is either a colour c ∈ C − ϕ(N̄(x2)) and we put

ψ(x2) = c and ψ(v) = ϕ(x2) or a colour c ∈ C − ϕ(N̄(t)) and we put ψ(t) = c

and ψ(v) = ϕ(t).
Case i = 2: Then there is a colour c ∈ C − ϕ(N̄(x2)) and we put ψ(x2) = c

and ψ(v) = ϕ(x2).

Theorem 5 Let H be a plane graph with ∆∗(H) = 8. Then χc(H) ≤ 13.

Proof. By contradiction. Let G be a (8, 13)-minimal graph. For any vertex

v ∈ V (G) let c0(v) = 1 − deg(v)
2

+
∑

f∈F (v)
1

deg(f)
be the initial charge of ver-

tex v. Then, using Euler’s formula and the handshaking lemma, it is easy to
see that

∑

v∈V c0(v) = 2. If a vertex v is of type (d1, . . . , dn), then c0(v) =
γ(d1, . . . , dn) = 1−n

2
+

∑n

i=1
1
di

. Clearly, if π is a permutation of the set {1, · · · , n},
then γ(dπ(1), . . . , dπ(n)) = γ(d1, . . . , dn).

A vertex v ∈ V (G) is positive if c0(v) > 0, otherwise it is nonpositive. For a
vertex v ∈ V let n(v) denote the number of all positive neighbours of v and let
n4+(v) denote the number of all neighbours of v of degree at least 4.

Note that because of Lemma 1.3 it holds that δ(G) ≥ 3.
Now let us state the following redistribution rules leading from c0 to c5 (where

the coordinate i of a rule Ri means that Ri is used when passing from ci−1 to ci):
R1 A vertex x of type (4, 7, 8) with n4+(x) = 0 sends an amount c0(x) to its
(4, 7)-neighbour.
R2 A (4+)−vertex v sends an amount −c1(x) to its neighbour x of type (4, 7, 8).
R3 A (4+)−vertex v sends an amount −c2(x) = −c0(x) to its (8, 8)-neighbour x
of type (3, 8, 8).
R4 A (5+)−vertex v sends an amount −c3(x) to its (3, 8)-neighbour x of type
(3, 8, 8) with c3(x) > 0.

R5 A 4-vertex v sends an amount c4(v)
n(v)

to its (3, 8)-neighbour x of type (3, 8, 8)

with c4(x) > 0.
Let v ∈ V (G), denote n = deg(v) and let us show that c5(v) ≤ 0, which

contradicts Euler’s formula.
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(1) If n ≥ 6, then c5(v) ≤ c0(v)+n·γ(3, 8, 8) ≤ 1− n
2
+ n

6
+ n

16
+ n

12
= 1− 3n

16
≤ 0.

(2) If n = 5, then c5(v) ≤ c0(v) + 5 · 1
12

≤ γ(3, 8, 3, 8, 8) + 5
12

= − 1
24

≤ 0.
(3) If n = 4, then c0(v) ≤ γ(3, 8, 3, 8) = − 1

12
and c1(v) = c0(v). Then if

n(v) = 0, then c5(v) = c0(v) ≤ 0, else some of rules R2, R3, R5 was applied on
v. Clearly, if R5 was used, then c5(v) = 0.

(31) If R2, but not R3 (and R5) was applied on v, then c5(v) = c2(v) ≤
c0(v) + 4 · 2γ(4, 7, 8) ≤ γ(3, 7, 4, 8) + 8 · 1

56
= − 1

168
≤ 0.

(32) If R3, but not R2 (and R5) was applied on v, then, c5(v) = c3(v) ≤
max{γ(3, 8, 8, 8) + 2 · 1

12
, γ(8, 8, 8, 8) + 4 · 1

12
} = −1

8
≤ 0.

(33) If both R2 and R3 (but not R5) were used for v, then c5(v) = c3(v) ≤
c0(v) + 3 · 1

12
+ 2 · 1

56
≤ γ(4, 7, 8, 8) + 2

7
= − 1

14
≤ 0.

(4) If n = 3, then either c5(v) = c0(v) ≤ 0 or c0(v) > 0 and v is either of type
(4, 7, 8) or of type (3, 8, 8).

(41) Let v be of type (4, 7, 8). If n4+(v) > 0, then, by R2, c5(v) = c2(v) = 0.
Otherwise c5(v) = c1(v) = 0 by R1 and configuration C1.

(42) Now let v be of type (3, 8, 8). If its (8, 8)-neighbour is of degree at least 4
or at least one of its (3, 8)-neighbours is of degree at least 5, then, by R3 or R4, we
have c5(v) = c4(v) ≤ 0. Otherwise, by Lemma 3, at least one of (3, 8)-neighbours
of v is of degree 4. Denote this vertex as z and denote the (3, 8)-neighbour of v
distinct from z as y.

(421) If also deg(y) = 4, then, by Lemma 3, at least one of y, z is not of
type (3, 8, 3, 8). Therefore its charge after R4 is at most max{γ(3, 8, 4, 8) + 2 · 2 ·
1
56
, γ(3, 8, 5, 8), γ(3, 8, 6, 8), γ(3, 8, 7, 8) + 2 · 2 · 1

56
, γ(3, 8, 8, 8) + 2 · 1

12
} = − 2

21
and

so c5(v) ≤
1
12

− 2
21

≤ 0.
(422) If deg(y) = 3, then z is not of type (3, 8, 5−, 8) (by Lemma 3). Then,

by rules, Lemma 3 and configuration C2 c4(z) ≤ max{γ(3, 8, 6, 8), γ(3, 8, 7, 8) +
2 · 2 · 1

56
, γ(3, 8, 8, 8) + 1

12
} = − 5

24
and so c5(v) ≤

1
12

− 1
2
· 5

24
≤ 0.
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