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Abstract

A graph G is arbitrarily decomposable into closed trails (ADCT) if the
following is true: Whenever (l1, . . . , lp) is a sequence of integers adding up
to |E(G)| and there is a closed trail of length li in G for i = 1, . . . , p, then
there is a sequence (T1, . . . , Tp) of pairwise edge-disjoint closed trails in G

such that Ti is of length li for i = 1, . . . , p. In the paper it is proved that
a 2n-vertex bipyramid is ADCT for any integer n ≥ 3. Further, if G is
a 4-connected planar graph that is ADCT, it contains at most four edges
incident only with faces of degree at least 4. There are examples showing
that the bound of four edges is tight.

1 Introduction

In the paper we deal with simple finite nonoriented graphs and we use almost
exclusively the standard terminology and notations of graph theory.

For p, q ∈ Z set [p, q] := {z ∈ Z : p ≤ z ≤ q} and [p,∞) := {z ∈ Z : p ≤ z}.
Let G be a graph. A closed trail of length p ∈ [3, |E(G)|] (a p-trail for brevity) in G
is a sequence (v0, v1, . . . , vp−1, vp) of vertices of G in which v0 = vp, vivi+1 ∈ E(G)
and vivi+1 6= vjvj+1 for i, j ∈ [0, p − 1], i 6= j. The set of edges {vivi+1 : i ∈
[0, p−1]} induces an Eulerian subgraph of G and we shall identify that subgraph
with T . For formal reasons the empty sequence ( ) will be considered to be a
closed trail of length 0. If G is even (i.e., all vertices of G are of even degrees),
G can be written as an edge-disjoint union of closed trails in G. Let

⋃k

i=1 Ti be
such a union and let li := |E(Ti)| be the length of Ti for i ∈ [1, k]; we say that the
sequence L := (l1, . . . , lk) is realisable in G and that (T1, . . . , Tk) is a G-realisation
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of L. Let Lct(G) be the set of all l’s such that G contains a closed trail of length
l and let Sct(G) be the set of all finite sequences with terms from Lct(G) whose
sum equals |E(G)|. If L = (l1, . . . , lk) is realisable in G, then L ∈ Sct(G). One
can pose the following natural question: Given L ∈ Sct(G), is it G-realisable? If
the answer is positive for any L ∈ Sct(G), G is said to be arbitrarily decomposable

into closed trails (ADCT for short).
The first achievement on the topic of ADCT graphs is due to Balister, who

proved in [1] that for odd n the complete graph Kn is ADCT and the same is true
for even n and the graph Kn − Mn, where Mn is a perfect matching in Kn; the
motivation came from chromatic graph theory, see Balister et al. [4]. A complete
bipartite graph Km,n is even if and only if both m and n are even; all such Km,n’s
are ADCT (Horňák and Woźniak [10]). The situation becomes more complicated
when passing to complete tripartite graphs. Namely, according to our paper [8],
if Kp,q,r with p ≤ q ≤ r is ADCT, then (p, q, r) ∈ {(1, 1, 3), (1, 1, 5)} or p = q = r;
moreover, the graphs K1,1,3, K1,1,5 and Kp,p,p, where p = 5 · 2l, l ∈ [0,∞), are
ADCT. Balister has shown in [2] that there are positive constants n and ε such
that whenever G is an even graph with |V (G)| ≥ n and δ(G) ≥ (1 − ε)|V (G)|,
then G is ADCT.

There are also natural analogues of ADCT graphs in the case of digraphs
(Balister [3], Cichacz [5]) and pseudographs (Cichacz et al. [6]).

The concatenation of sequences A = (a1, . . . , am) and B = (b1, . . . , bn) is
the sequence AB = (a1, . . . , am, b1, . . . , bn). The concatenation is associative,
and this fact justifies the use of

∏k

i=1 Ai for the concatenation of k ∈ [2,∞)
sequences A1, . . . , Ak in the order given by the sequence (A1, . . . , Ak). A sequence
A = (a1, . . . , am) is changeable to a sequence Â = (â1, . . . , âm) of the same length
m, in symbols A ∼ Â, if there is a bijection β : [1, m] → [1, m] such that âi = aβ(i)

for any i ∈ [1, m]. For a finite sequence S of real numbers we use σ(S) to denote
the sum of terms of S.

Consider a planar graph G and its plane embedding G̃ with sets V (G̃), E(G̃)
and F (G̃) of vertices, edges and faces; throughout the whole paper we supose
(without loss of generality) that V (G) = V (G̃). We shall denote by π(G̃) the
plane of the embedding G̃. If x ∈ V (G̃) ∪ E(G̃) and f ∈ F (G̃), x ∼ f (and vice
versa f ∼ x) will denote the fact that x and f are incident with each other. Let
V (f) := {v ∈ V (G̃) : v ∼ f}, and, for e ∈ E(G̃), let F (e) := {f ∈ F (G̃) : f ∼ e}.
The degree of f is deg(f) :=

∑
e∼f(3− |F (e)|); if G is 2-connected, f is bounded

by a cycle (called facial) and deg(f) = |V (f)|. A d-face (a d-vertex) is a face
(a vertex) of degree d; by fd(G̃) and vd(G̃) we denote the number of d-faces and
that of d-vertices, respectively, of G̃. If G is 3-connected, then, by a well known
result of Whitney, a plane embedding G̃ of G is unique in such a sense that for
any edge e ∈ E(G) there is a (unique) multiset {d1, d2} (degree multiset of e, in
symbols dms(e)) such that (the image of) e is in G̃ incident with faces f1 and f2

satisfying deg(fi) = di, i = 1, 2. In such a case we define E4+(G) := {e ∈ E(G) :
3 /∈ dms(e)}.
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Suppose that T1, T2 are edge-disjoint closed trails in a graph G and denote by
T1 + T2 the set of all closed trails T in G with E(T ) = E(T1)∪E(T2). Evidently,
the set T1 + T2 is nonempty if and only if V (T1) and V (T2) are non-disjoint.

2 Preparatory results

The following two easy statements are taken from our paper [8].

Lemma 1 If G is a graph, L1, L2 ∈ Sct(G) and L1 ∼ L2, then L1 is G-realisable

if and only if L2 is G-realisable.

Lemma 2 If G is an even graph, then Lct(G) ⊆ [3, |E(G)| − 3] ∪ {|E(G)|}.

Fijavž et al. proved in [7] the following theorem:

Theorem 3 If G is a planar graph of minimum degree at least four, then G
contains a 3-cycle, a 5-cycle, and a 6-cycle.

The additional assumption of 2-connectedness of G enables us to prove a little
bit more.

Theorem 4 If G is a 2-connected planar graph of minimum degree at least four,

then G contains a 4-cycle or a 7-cycle.

Proof. Suppose that G contains neither a 4-cycle nor a 7-cycle and consider a
plane embedding G̃ of G.

Consider a 5-face p ∈ F (G̃) with a boundary cycle (w1, w2, w3, w4, w5, w1).
Let us first show that if g ∈ F (G̃) is a 3-face with |V (p) ∩ V (g)| ≥ 2, then p is
adjacent to g and |V (p)∩V (g)| = 2. If p is not adjacent to g, then we may suppose
without loss of generality that V (p)∩ V (g) = {w1, w3}. Then (w1, w2, w3, w, w1),
where w ∈ V (g)− V (p), is a 4-cycle in G̃, a contradiction. Thus p is adjacent to
g, say {w1, w2} ⊆ V (g). If |V (p) ∩ V (g)| = 3, then, since deg(wi) > 2, i = 1, 2,
the third vertex of g must be w4. In such a case, however, (w1, w2, w3, w4, w1) is
a 4-cycle in G̃, a contradiction.

Our next claim is that p is adjacent to at most one 3-face. Suppose that p
is adjacent to 3-faces g1, g2, g1 6= g2. Then |V (p) ∩ V (g1)| = |V (p) ∩ V (g2)| = 2
and we may suppose without loss of generality that V (g1) = {w1, w2, x1} and
V (g2) = {wi, wi+1, x2}, where i ∈ [2, 3] and x1, x2 6∈ V (p). If x1 = x2, then
(w1, w2, w3, x1, w1) is a 4-cycle in G̃; on the other hand, if x1 6= x2, then the
subgraph of G̃ induced by V (p) ∪ {x1, x2} contains a 7-cycle, in both cases a
contradiction.
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Since the graph G̃ is 2-connected, any face f ∈ F (G̃) is incident with deg(f)
vertices. Therefore,

∑
v∼f

1
deg(f)

= 1 and

|F (G̃)| =
∑

f∈F (G̃)

∑

v∼f

1

deg(f)
=

∑

v∈V (G̃)

∑

f∼v

1

deg(f)
.

Moreover, |V (G̃)| =
∑

v∈V (G̃) 1 and 2|E(G̃)| =
∑

v∈V (G̃) deg(v), hence Euler’s

formula |V (G̃)| − |E(G̃)| + |F (G̃)| = 2 can be rewritten as

∑

v∈V (G̃)

c(v) = 2, (1)

where c : V (G̃) → Q is a rational valued map defined by

c(v) := 1 −
1

2
deg(v) +

∑

f∼v

1

deg(f)
.

Consider a vertex v ∈ V (G̃) of degree d. Let f1, . . . , fd be faces incident with
v in a cyclic order around v and suppose that deg(f1) ≤ deg(fi) for any i ∈ [2, d].
For i ∈ [1, d] let vvi be the common edge of fi and fi+1 (where indices are taken
modulo d in the set [1, d]). If deg(f1) ≥ 5, then c(v) ≤ 1 − d

2
+ d

5
= 1 − 3d

10
≤ −1

5
.

In the sequel we suppose that deg(f1) = 3. A v-section is a subsequence
(fi, . . . , fj) of the sequence (f1, . . . , fd) such that deg(fi) = deg(fj+1) = 3 and
deg(fk) ≥ 5 for any k ∈ [i+1, j]. If deg(fi) = 3, then deg(fi+1) ≥ 5, for otherwise
(v, vi−1, vi, vi+1, v) would be a 4-cycle in G̃. Thus, any v-section is of length at
least two. Let s be the number of v-sections and let (S1, . . . , Ss) be the natural
sequence of v-sections: S1 starts with f1, and, if Sl ends with fm, then Sl+1 starts
with fm+1. Provided that Sp = (fq, . . . , fr), we have

∑r

k=q
1

deg(fk)
= (r + 1− q)σp,

where σp is the mean value of the fraction 1
deg(fk)

for k ∈ [q, r]. Let lp := r + 1− q
denote the length of the v-section Sp. If lp=2, then from the claim above we know
that deg(fr) = deg(fq+1) ≥ 6, and so σp ≤ 1

2
(1

3
+ 1

6
) = 1

4
. On the other hand, if

lp ≥ 3, then σp ≤ 1
lp

(1
3

+ lp−1
5

) = 1
5

+ 2
15lp

≤ 11
45

< 1
4
. Therefore,

∑d

k=1
1

deg(fk)
=

∑s

k=1 lkσk ≤
∑s

k=1
lk
4

= d
4

and c(v) = 1− d
2

+
∑d

k=1
1

deg(fk)
≤ 1− d

2
+ d

4
= 1− d

4
≤ 0.

Since c(v) ≤ 0 for each v ∈ V (G̃), we have obtained a contradiction with (1).

3 Four-connected planar graphs

Proposition 5 If G is a 4-connected planar graph and T is a closed trail of

length 3 in G, then E4+(G) ∩ E(T ) = ∅.

Proof. Consider a plane embedding G̃ of G and the closed trail T̃ (of length 3) in
G̃ corresponding to T . Assume that xy ∈ E4+(G̃)∩E(T̃ ) and let x1, x2 = y, . . . , xd
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be neighbours of x in a cyclic order around x. Then V (T̃ ) = {x, x2, xk} for some
k ∈ [1, d]−{2}. Consider the closed Jordan curve J := V (T̃ )∪

⋃
e∈E(T̃ ) e in π(G̃)

and the regions π1, π2 of π(G̃) cut off by J . If k ∈ {1, 3}, then the face f of G̃
incident with xy and xxk is of degree at least 4; there is i ∈ [1, 2] such that all
deg(f) − 3 vertices of V (f) − {x, x2, xk} lie in the region πi and xd lies in π3−i.
On the other hand, if k ∈ [4, d], there is j ∈ [1, 2] such that x1 lies in πj and
x3 in π3−j . Thus, in both cases G̃ − V (T̃ ) is disconnected in contradiction with
4-connectedness of G̃.

Proposition 6 Suppose that a 4-connected planar graph G is ADCT and (k)(3)r

∈ Sct(G). Then the following hold:

1. If k ≥ 4, then |E4+(G)| ≤ k.

2. If k = 3, then E4+(G) = ∅.

Proof. There exists a G-realisation (T1, . . . , Tr+1) of the sequence (k)(3)r (in
which T1 is of length k). By Proposition 5 we have E4+(G)∩

⋃r+1
j=2 E(Tj) = ∅ and

E4+(G) ⊆ E(T1). If k ≥ 4, then k = |E(T1)| ≥ |E4+(G)|. If k = 3, then we have
also E4+(G) ∩ E(T1) = ∅, and so E4+(G) = ∅.

Theorem 7 If a 4-connected planar graph is ADCT, it contains a 4-cycle.

Proof. Suppose G is a 4-connected planar graph that does not contain any
4-cycle and let G̃ be a plane embedding of G. From Euler’s formula for G̃ one
can easily derive that

∑
i=3(4−i)(fi(G̃)+vi(G̃)) = 8, hence f3(G̃) = 8+

∑∞
i=5(i−

4)(fi(G̃) + vi(G̃)) ≥ 8. A 3-face of G̃ is adjacent only to faces of degrees at least
five, and so

∑∞
i=5 ifi(G̃) ≥ 3f3(G̃) ≥ 24. Thus, |E(G̃)| = 1

2

∑∞
i=3 ifi(G̃) ≥ 24.

By Theorems 3 and 4 we have 3, 5, 7 ∈ Lct(G). Let m ∈ [0, 2] be such that

|E(G)| ≡ m (mod 3), put (e0, e1, e2) := (0, 7, 5) and rm := |E(G)|−em

3
≥ 6. Then

the set Sct(G) contains the sequence Rm, where R0 := (3)r0 and Rj := (ej)(3)rj ,
j = 1, 2. By Proposition 6 we have |E4+(G)| ≤ em.

Let (p0, p1, p2) := (3, 2, 4) and (s0, s1, s2) := (r0 − 5, r1 − 1, r2 − 5) ∈ [2,∞)3.
The set Sct(G) contains also the sequence Sm := (5)pm(3)sm. Let T = (T 5

1 , . . . ,
T 5

pm
, T 3

1 , . . . , T 3
sm

) be a G-realisation of Sm. Because of |E4+(G)| ≤ em we may
suppose without loss of generality that |E(T 5

1 ) ∩ E4+(G)| ≤ lm := b em

pm
c. Thus, if

T 5
1 = (x1, x2, x3, x4, x5, x1), there is a decomposition {I1, I2} of the set [1, 5] such

that |I1| ≤ lm and xixi+1 ∈ E4+(G) ⇔ i ∈ I1 (with indices taken modulo 5 in
the set [1,5]). Moreover, the 5-cycle T 5

1 has no chords (otherwise there would be
a 4-cycle in G). Therefore, for any j ∈ I2 there is a vertex vj 6∈ V (T 5

1 ) such that
{(xj, xj+1, vj, xj) : j ∈ I2} is a system of pairwise edge-disjoint facial 3-cycles in G
(to see that i 6= j for i, j ∈ I2 implies vi 6= vj we repeat the reasoning concerning
the 5-face p in the proof of Theorem 4), and so |

⋃
i∈I2

{vi}| = |I2|. Since G
contains no 4-cycle, it is easy to see that E−

i := {vixj : j ∈ [1, 5] − {i}, j 6≡ i + 1
(mod 5)} with i ∈ I2 and E− := {vivj : i, j ∈ I2, i 6= j} are sets of non-edges
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of G. Thus, the set of edges E := {vixi+j : i ∈ I2, j ∈ [0, 1]} is such that
E ∩ E(T 5

i ) induces a connected subgraph Gi of G for any i ∈ [2, pm]. Indeed,
provided that e1, e2 ∈ E ∩ E(T 5

i ) belong to distinct components of Gi, at least
one of the remaining three edges of T 5

i , say e, is such that both its vertices are in
{xj : j ∈ [1, 5]}∪

⋃
j∈I2

{vj}; thus, either e is a chord of T 5
1 or e ∈ E− ∪

⋃
j∈I2

E−
j ,

in both cases a contradiction. Since the subgraph of G induced by the set of
edges E is a union of paths or C10, Gi must be a path for every i ∈ [2, pm] 6= ∅. If
Gi is of length 3 or 4, a 4-cycle in G can easily be found. So, |E ∩E(T 5

i )| ≤ 2 for
all i ∈ [2, pm], and, since |I2| = 5−|I1| ≥ 5− lm, the number of edges that do not
belong to 5-trails of T is at least 2(5− lm)−2(pm −1) ≥ 2. Hence, there is i ∈ I2

and j ∈ [0, 1] such that the edge vixi+j belongs to a 3-trail (vi, xi+j, x, vi) of T
with x 6= xi+1−j so that (vi, xi+j, x, xi+1−j , vi) is a 4-cycle in G, a contradiction.

Theorem 8 Let G be a 4-connected planar graph that is ADCT and let |E(G)| ≡
m (mod 3), m ∈ [0, 2]. Then the following hold:

1. If m = 0, then E4+(G) = ∅.
2. If m ∈ [1, 2], then |E4+(G)| ≤ 4 and the bound is tight.

Proof. By Theorems 3 and 7 we have 3, 4, 5 ∈ Lct(G). Let G̃ be a plane
embedding of G. As in the proof of Theorem 6 we obtain f3(G̃) ≥ 8, and so
q := |E(G)| = 1

2

∑∞
i=3 ifi(G̃) ≥ 12.

1. If m = 0, then (3)
q

3 ∈ Sct(G), hence we are done by Proposition 6.2.

2. If m ∈ [1, 2], then q−m−3
3

≥ 3, (m+3)(3)
q−m−3

3 ∈ Sct(G), and so |E4+(G)| ≤
m + 3. Provided that m = 1, we have obtained the desired inequality. In
the case m = 2 suppose |E4+(G)| = 5 and consider G̃-realisations (T 1

1 , . . . , T 1
r )

and (T 2
1 , . . . , T 2

r ) of the sequences (5)(3)r−1 and (4)2(3)r−2 with r := q−5
3

≥ 3.

From Proposition 5 it follows that E(T 1
1 ) = E4+(G̃) ⊆ E(T 2

1 ) ∪ E(T 2
2 ), hence

there is i ∈ [1, 2] such that 3 ≤ |E4+(G̃) ∩ E(T 2
i )| = |E(T 1

1 ) ∩ E(T 2
i )|. Thus,

if T 1
1 = (x1, x2, x3, x4, x5, x1), without loss of generality we may suppose that

T 2
i = (x1, x2, x3, x4, x1). Since x4x5 ∈ E4+(G̃), any region cut off from π(G̃)

by the closed Jordan curve J := {x1, x4, x5} ∪ {x1x4, x4x5, x5x1} (here xixj is
an open arc between points xi and xj) contains at least one vertex (if f is the
face of G̃ incident with x4x5 and lying in that region, then deg(f) ≥ 4, and so
V (f) − {x1, x4, x5} 6= ∅). Thus G̃ − {x1, x4, x5} is disconnected in contradiction
with 4-connectedness of G̃.

Consider the planar graph Gm, m = 1, 2, whose plane embedding is presented
in Fig. m+ 1 in such a way that grey regions are isomorphic to a disc embedding
of the graph F23 depicted in Fig. 1 (and the vertices denoted by v in Fig. 2 are to
be identified). In our paper [9] it is proved that Gm is a 4-connected planar graph
that is ADCT and satisfies |E4+(Gm)| = 4 (the edges in E4+(Gm) are dashed).
Since |E(G1)| = 850 ≡ 1 (mod 3) and |E(G2)| = 629 ≡ 2 (mod 3), the bound
|E4+(G)| ≤ 4 in our Theorem is indeed tight.
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v1

v2

v3 v4 v5 v6 v20 v21 v22 v23

Figure 1: The graph F23

4 Bipyramids

Let Bm denote the m-vertex bipyramid, m ∈ [5,∞). If m = 2n is even, B2n =⋃2n−2
i=1 Ci

3 is the edge-disjoint union of 2n−2 C3’s, see Fig. 4. For p, q ∈ [1, 2n−2]
the graph C(p, q) :=

⋃q

i=p Ci
3 is connected and even (possibly empty, if q < p).

We have the following evident assertions:

Proposition 9 If n ∈ [3,∞), r ∈ [1,∞) and (p1, . . . , p2r) is a sequence of inte-

gers from [1, 2n−2] satisfying p2i ≥ p2i−1−1 for every i ∈ [1, r] and p2i+1 = p2i+1
for every i ∈ [1, r − 1], then C(p1, p2r) is the edge-disjoint union of r graphs

C(p2i−1, p2i) with i ∈ [1, r].

Proposition 10 If n ∈ [3,∞), p1, q1, p2, q2 ∈ [1, 2n − 2] and q1 − p1 = q2 − p2,

then C(p1, q1) is isomorphic to C(p2, q2).

Lemma 11 If n ∈ [3,∞), l1, l2, l3 ∈ [4, 6n − 14], there is j ∈ [1, 2] such that

li ≡ j (mod 3), i = 1, 2, 3, and l1 + l2 + l3 = 3l ≤ 6n − 6, then the sequence

(l1, l2, l3) is realisable in C(1, l).

Proof. Because of Lemma 1 we may suppose without loss of generality that if the
sequence L := (l1, l2, l3) contains the term j +6, then all such terms are at the be-
ginning of L. Put p1 := 1, p2 := j+3, p2i+1 := j+3+

∑i−1
k=1

lk−j−3
3

+1 and p2i+2 :=

j + 3 +
∑i

k=1
lk−j−3

3
, i = 1, 2, 3, and consider a C(1, j + 3)-realisation (T j

1 , T j
2 , T j

3 )
of the sequence (j + 3)3, where T 1

1 := (v1, v3, v4, v5, v1), T 1
2 := (v2, v5, v6, v7, v2),

T 1
3 := (v1, v4, v2, v6, v1), T 2

1 := (v2, v6, v1, v3, v4, v2), T 2
2 := (v1, v5, v6, v7, v8, v1),

T 2
3 := (v2, v7, v1, v4, v5, v2). Further, let T ′

i be a closed Eulerian trail in the graph
C(p2i+1, p2i+2) (of length li − j − 3), i = 1, 2, 3. From our assumption it follows
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v

v

v v

Figure 2: The graph G1
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Figure 3: The graph G2
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v2

v1

v3

v4

v5

v6

v2n−3

v2n−2

v2n−1

v2n

C1

3

C2

3

C3

3 C2n−3

3

C2n−4

3

C2n−5

3

C2n−2

3

Figure 4: The graph B2n

that if the trail T ′
i is non-empty and i ≡ k (mod 2), k ∈ [0, 1], then T ′

i con-
tains the vertex vj+1−k; note that if T ′

i is of length at least 6, it contains both
v1 and v2. Since vj ∈ V (T j

1 ), v3−j ∈ V (T j
2 ) and vj ∈ V (T j

3 ), there is a trail
Ti ∈ T j

i + T ′
i of length j + 3 + (li − j − 3) = li, i = 1, 2, 3. We have p2 > p1,

p2i+2 = p2i+1 + li−j−3
3

− 1 ≥ p2i+1 − 1, p2i+1 = p2i + 1, i = 1, 2, 3, and p8 = l, and
so, by Proposition 9, (T1, T2, T3) is a C(1, l)-realisation of L.

Lemma 12 If n ∈ [3,∞), l1, l2 ∈ [4, 6n − 10] are such that li 6≡ 0 (mod 3),
i = 1, 2, and l1 + l2 = 3l ≤ 6n − 6, then the sequence (l1, l2) is realisable in

C(1, l).

Proof. Again by Lemma 1 we may assume that if the sequence L := (l1, l2)
contains the term 7 or the term 8, then all such terms are at the beginning of L.
Let j ∈ [1, 2] be such that l1 ≡ j (mod 3) and l2 ≡ 3 − j (mod 3). Put p1 := 1,
p2 := 3, p3 := 4, p4 := 3+ l1−j−3

3
, p5 := 4+ l1−j−3

3
and p6 := 3+ l1−j−3

3
+ l2+j−6

3
= l

and let (T 1
1 , T 1

2 ) be the C(1, 3)-realisation of the sequence (j + 3, 6 − j), where
T 1

1 := (v1)[
∏4

k=5−j(v
k)](v2, v5, v1) and T 1

2 := (v1)[
∏6

k=j+2(v
k)](v1). Moreover,

consider a closed Eulerian trail T ′
i in the graph C(p2i+1, p2i+2), i = 1, 2. If the

trail T ′
i is non-empty, it contains the vertex v3−i, i = 1, 2. In such a case there

is a trail Ti ∈ T 1
i + T ′

i , (note that v3−i ∈ V (T 1
i )), i = 1, 2; T1 is of length

j +3+(l1− j−3) = l1 and T2 is of length 6− j +(l2 + j−6) = l2. Thus, similarly
as in the proof of Lemma 11, (T1, T2) is a C(1, l)-realisation of L.
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Lemma 13 If n ∈ [3,∞), s ∈ [1, 2n− 2], li ∈ [3, 6n− 6] and li ≡ 0 (mod 3) for

every i ∈ [1, s] and
∑s

i=1 li = 3l ≤ 6n− 6, then the sequence
∏s

i=1(li) is realisable

in C(1, l).

Proof. Let Ti be a closed Eulerian trail in the graph C(p2i−1, p2i) where p2i−1 :=∑i−1
k=1

lk
3

+ 1 and p2i :=
∑i

k=1
lk
3

for each i ∈ [1, s]. Then Ti is of length li and∏s

i=1(Ti) is a realisation of
∏s

i=1(li) in the graph C(1, l).

Theorem 14 The graph Bm is ADCT if and only if m ≡ 0 (mod 2).

Proof. If the graph Bm is ADCT, it is even, and so degBm
(v1) = m − 2 ≡ 0

(mod 2). Suppose now that m = 2n is even. By Lemma 2 we have Lct(B2n) ⊆
[3, 6n−9]∪{6n−6} =: B2n. We are going to show that any sequence L of integers
of B2n adding up to 6n − 6 = |E(B2n)| is B2n-realisable (which in fact implicitly
proves that Lct(B2n) = B2n). Let mi be the number of terms of L that are
congruent to i modulo 3, i = 0, 1, 2. Since m1 − m2 ≡ m1 + 2m2 ≡ |E(B2n)| ≡ 0
(mod 3), m1 and m2 are in the same congruence class modulo 3. Let j ∈ [0, 2] be
such that mi ≡ j (mod 3), i = 1, 2. Then L ∼ L1,2L0L1L2 where L1,2 consists of
2j terms belonging alternatingly to the congruence classes 1 and 2 modulo 3 and
Li is formed from remaining terms in the congruence class i modulo 3, i = 0, 1, 2.

Put p1 := 1, p2 := σ(L1,2)/3, p4 := σ(L1,2L0)/3, p6 := σ(L1,2L0L1)/3,
p8 := σ(L)/3 and p2i+1 := p2i + 1, i = 1, 2, 3. By Lemma 12 applied to j al-
ternating sequences (in the above sense of length 2 concatenating to L1,2 and by
Proposition 10 we see that L1,2 has a realisation T1,2 in the graph C(p1, p2) : if
L1,2 = (l1, l2, l3, l4), then (l1, l2) is realisable in the graph C(p1, (l1 + l2)/3) and
(l3, l4) in the graph C(1, (l3 + l4)/3) that is isomorphic to C((l1 + l2)/3 + 1, p2).
By Lemma 13, the sequence L0 has a realisation T0 in the graph C(p3, p4). Fur-
ther, by Lemma 11 applied to (mi − j)/3 sequences of length 3 concatenating
to Li, and by Proposition 10, the sequence Li has a C(p2i+3, p2i+4)-realisation
Ti, i = 1, 2. Using Proposition 9 then T1,2T0T1T2 is a realisation of the sequence
L1,2L0L1L2 ∼ L in the graph C(1, σ(L)/3) = B2n and we are done by Lemma 1.
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