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Abstract

Let the cake be represented by the unit interval and let each player
have a valuations expressed by a nonatomic probability measure. A cake
division is said to be equitable if the value of a piece assigned to a player
by her measure is the same for all players. We show that for any number
n of players an equitable division exists, giving each player a contiguous
cake piece.
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1 Introduction

In this paper we deal with the problem of ’fairly’ dividing a certain infinitely
divisible resource, traditionally called the cake, between n people (players). The
cake is represented by the interval [0, 1] of reals. Players may have different
opinions about the values of different parts of the cake.
We shall concentrate on equitable divisions, i.e. such that the values of pieces

assigned to all players are equal (according to their valuations). In the literature,
other concepts of fairness are considered, too. In a proportional division each
player receives at least 1/n part of the cake according to her valuation, in an
envy-free division no player thinks that she would be better off with somebody
else’s piece and an exact division assigns pieces such that if a player evaluates by
her own measure a piece assigned to any player (including herself), she always
gets exactly 1/n. It is known that in general, these properties are not equivalent,
see e.g. [3] and [9], where also some other notions are defined and the relations
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between them explored. For example, an exact division is always equitable, but
an equitable division may be neither proportional nor envy-free. It might even
happen that an equitable division gives to each player a piece of value zero,
so this paradox undermines our feeling of fairnes. This might also be a possible
explanation why equitability is not as popular as proportionality or envy-freeness
criteria.
A result of Alon [1] implies that an exact division for n players always exists,

however, as many as (n − 1)n cuts may be necessary. Equitable divisions with
contiguous pieces have also been studied. Brams, Jones and Klamler [3] assumed
that the valuations are in the form of an integral of a Riemann integrable function
(probability densities). The cutpoints of an equitable division for n players having
n−1 points are then solutions of a system of equations involving integrals, where
the unknowns are the upper and/or lower bounds of the integrals. However, they
did not prove the solvability of such a system. Mawet, Pereira and Petit [8]
considered the case of piecewise constant density functions. They assumed that
their breakpoints, dividing [0, 1] into subintervals with constant nonzero densities,
as well as the values of these constants are known. Under such assumptions, given
the order of players and for each cutpoint the subinterval where it is located, the
precise positions of the cutpoints are a solution of a system of linear equations.
Mawet, Pereira and Petit showed that the matrix of this system is always regular,
hence a unique solution exists, however, they did not show that this solution really
falls into subintervals where they assumed it is located. Another existence proof
for equitable divisions is given in [2]. It uses the compactness of the set of all
divisions with contiguous pieces. Our result is stronger in that we prove the
existence of such divisions for any order of players.

2 Definitions

We will consider the set of players N = {1, 2, ..., n}. The cake is represented
by the interval [0, 1]. In this work, the only allowable portions – pieces (see
[7]) are intervals [p, q], 0 ≤ p ≤ q ≤ 1. A cutpoint of two neighbouring pieces
cannot belong to both of them, but since in our model the value of a piece is not
influenced by a single point, we shall represent all pieces as closed intervals.
We shall suppose that each player i is endowed with a nonatomic probability

measure Ui on the cake. Such a measure can be represented by the distribution
function Fi(x) = Ui(0, x), so that the measure of each interval [p, q] is equal
to Fi(q) − Fi(p). The properties of the measure imply that the function Fi is
nonnegative, nondecreasing and continuous on [0,1] and Fi(0) = 0, Fi(1) = 1. If
the distribution function Fi has a density fi, then

Ui(p, q) =
∫ q

p

fi(t)dt.
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A cake division is a partition of the cake into n disjoint pieces; the piece
assigned to player i in a division D will be denoted by Di. The various fairness
criteria are formulated in the following definition (see also [3, 9] for other notions
and relations between them).

Definition 1 A cake division D = (D1, D2, . . . , Dn) is said to be
a) proportional, if Ui(Di) ≥ 1/n for each i ∈ N
b) exact, if Ui(Dj) = 1/n for each i, j ∈ N
c) envy-free, if Ui(Di) ≥ Ui(Dj) for each i, j ∈ N
d) equitable, if Ui(Di) = Uj(Dj) for each i, j ∈ N .

In many cases, the existence of a division with some property has only been
proved at the cost of assigning to a player several nonadjacent intervals (like the
result of Alon [1]). However, such a division may be very impractical in the real
life. Therefore we are interested in cake divisions where each player receives a
contiguous piece. Such cake divisions will be called simple and they are specified
by their cutpoints and the order of players.

Definition 2 A simple cake division is a pair D = (d, ϕ), where d is an (n− 1)-
tuple (x1, x2, ..., xn−1) of cutpoints with 0 ≤ x1 ≤ x2 ≤ ... ≤ xn−1 ≤ 1, and
ϕ : N → N is a permutation of N .

For technical reasons, we set x0 = 0 and xn = 1. Permutation ϕ in the division
D means that player i is assigned the interval [xj−1, xj] if ϕ(j) = i. Further, we
shall suppose that each player i is indifferent between getting a piece with value
zero and getting no piece in a division D; the latter occurs for a player i with
ϕ(j) = i and xj−1 = xj.
The cutpoints e1, . . . , en−1 of an equitable simple division (ESD for short) for

n players and identity permutation fulfill 0 ≤ e1 ≤ · · · ≤ en−1 ≤ 1 and the
following system of equalities:

F1(e1) = F2(e2)− F2(e1) (1)

= F3(e3)− F3(e2)

. . .

= Fn−1(en−1)− Fn−1(en−2)

= 1− Fn(en−1).

The main result of this paper is a proof showing that the equations system
(1) always has a solution if the functions Fi, i = 1, 2, . . . , n are nonnegative,
nondecreasing and continuous.

Example 1. This example was presented by Hill and Morison in [7] as a coun-
terexample for the claim of Brams, Jones and Klamler in [3].
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The problems were caused by utility functions allowing zero intervals. How-
ever, we shall show that Hill and Morison were also wrong.
Let the probability densities of the three players be:

f1(t) ≡ 1 f2(t) =

{
3 if t ∈ [0, 1/3]
0 if t ∈ (1/3, 1] f3(t) =

{
0 if t ∈ [0, 2/3]
3 if t ∈ (2/3, 1]

For players’ orders (1, 2, 3), (2, 1, 3) and (2, 3, 1) there are equitable cake divisions
with (e1, e2) at positions (1/4, 11/12), (1/5, 4/5) and (1/12, 3/4), respectively,
and the assigned values are equal to 1/4, 3/5 and 1/4, respectively.
Further, if player 3 is first, then the only possibility for an ESD is that all

players receive an equivalent of 0. Namely, if e1 ≤ 2/3 then player 3 necessarily
gets a piece with value 0. On the other hand, if e1 > 2/3, then player 2 cannot
get a piece with positive value. So the only possibility for an ESD is to give
each player 0. If players’ order is (3,1,2) then this can be achieved by setting
1/3 ≤ e1 = e2 ≤ 2/3; for (3,2,1) it is sufficient to set e2 = 1 and to choose e1 in
the interval [1/3, 2/3] arbitrarily.
Finally, for the players’ order (1, 3, 2) an ESD can be achieved by setting

e1 = 0 and e2 ∈ [1/3, 2/3]. Player 1 receives no piece and the two other players
pieces which they value at 0.

3 The main result

For two players, we are seeking a point e1 ∈ [0, 1] such that
U1(0, e1) = U2(e1, 1).

As the functions F (x) = U1(0, x) and G(x) = U2(x, 1) of variable x on [0,1] are
continuous and inequalities F (0) ≤ G(0), F (1) ≥ G(1) hold, a simple application
of the Intermediate Value Theorem implies the existence of a point e1 with the
desired properties.
However, as soon as we move to three players, difficulties arises. Suppose

first, that player 3 has received the piece [e2, 1]. Players 1 and 2 want to divide
the interval [0, e2] in an equitable manner. An equitable division point e1 for
two players on the interval [0, e2] always exists and it depends in a nondecreasing
manner of e2. So it seems that it suffices to find e2 such that the common value
U that players 1 and 2 incur on the interval [0, e2], as a function of variable e2,
is equal to the value assigned to player 3. The crucial step in the proof of the
existence of such e2 is to show that U is a nondecreasing and continuous function
of e2, which enables the use of Intermediate Value Theorem again.
This idea is hidden behind our proof. Formally, we use a notion of a gen-

eralized inverse (see citeEH10 or [5] to see how this defintion appears in the
probability theory in the form of the quantile function) to capture the depen-
dence of e1 on e2. We were able to prove immediately the case for an arbitrary
number of players by mathematical induction.
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Definition 3 Let h : [0, 1] → [0, 2] be a nondecreasing function with h(1) ≥ 1.
The generalized inverse of h is a function h− : [0, 1]→ [0, 1] defined by

h−(x) := inf{z ∈ [0, 1] : h(z) ≥ x}. (2)

The properties of the generalized inverse are summarized in the following Lemma.

Lemma 1 If h : [0, 1] → [0, 2] is a nondecreasing continuous function such that
h(0) = 0 and h(1) ≥ 1 then
(i) h−(0) = 0, h−(1) ≤ 1;
(ii) h− is nondecreasing;

(iii) for each x ∈ [0, 1]:

h−(x) = min{z ∈ [0, 1] : h(z) = x} hence h(h−(x)) = x.

(iv) For each x ∈ (0, 1] the left-hand limit

h−(x−) := lim
t→x−

h−(t)

exists, moreover,
h−(x−) ≤ h(x) (3)

and
h(h−(x−)) = x. (4)

Further, for each x ∈ [0, 1) the right-hand limit

h−(x+) := lim
t→x+

h−(t)

exists, moreover,
h−(x) ≤ h−(x+) (5)

and
h(h−(x+)) = x.

(v) Function h− is continuous from the left in each x ∈ (0, 1].

Proof.
(i) Trivial.
(ii) It suffices to realize that

x1 < x2 implies {z ∈ [0, 1] : h(z) ≥ x2} ⊆ {z ∈ [0, 1] : h(z) ≥ x1}.

(iii) Let us define for each x ∈ [0, 1]:

Mx = {z ∈ [0, 1] : h(z) = x}, Nx = {z ∈ [0, 1] : h(z) ≥ x}.
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Let x ∈ [0, 1]. The set Mx is a nonempty closed interval, say Mx = [a, b].
Similarly, Nx is a nonempty closed interval, say Nx = [c, d]. As Mx ⊆ Nx, we
have c ≤ a. Further, x ≤ h(c) ≤ h(a) = x, since h is nondecreasing. This implies
c ∈ Mx, hence c ≥ a. The rest follows.
(iv) The existence of one-sided limits and inequalities (3) and (5) follow from
(ii). To show (4), let x ∈ (0, 1] be fixed and take any sequence xn ∈ (0, x) such
that

lim
n→∞

xn = x.

Then
lim

n→∞
h−(xn) = h−(x−).

Property (iii) implies that h(h−(xn)) = xn for each n ∈ N. Using continuity of
h, taking this equality to the limit (for n →∞) gives

h(h−(x−)) = x.

Equality h(h−(x+)) = x can be shown similarly.
(v) Equality h(h−(x−)) = x implies h−(x−) ∈ Mx, hence h−(x) ≤ h−(x−) and
the left continuity follows.

Lemma 2 Let g, f : [0, 1] → [0, 1] be continuous nondecreasing functions such
that g(0) = f(0) = 0, f(1) = 1. Then

(i) the function g ◦ (g + f)− is continuous.

(ii) for each y ∈ [0, 1] there exists x ∈ [0, y] such that g(x) + f(x) = f(y).

Proof. (i) Let us denote the function g + f by h and take any x ∈ [0, 1). Since
both f, g are nondecreasing, equalities

g(h−(x)) + f(h−(x)) = h(h−(x)) = x,

g(h−(x+)) + f(h−(x+)) = h(h−(x+)) = x,

imply
g(h−(x)) = g(h−(x+)).

Function g is continuous, so (g ◦ h−)(x+) = g(h−(x+)) = g(h−(x)) and the
continuity of g ◦ h− from the right follows.
Continuity from the left is implied by Lemma 1 (v).

(ii) Let y ∈ [0, 1]. Function g + f is continuous on [0, y], and

g(0) + f(0) ≤ f(y),

g(y) + f(y) ≥ f(y).

The Intermediate Value Theorem now implies that x ∈ [0, y] exists such that
g(x) + f(x) = f(y).
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Let us now return to the equation system (1). Define the functions Gj :
[0, 1]→ [0, 1] recursively by

G1 := F1, Gj := Gj−1 ◦ (Gj−1 + Fj)
− ◦ Fj for j = 2, . . . , n− 1.

The following assertion can be proved by induction.

Lemma 3 If for each k = 1, 2, . . . , n functions Fk : [0, 1]→ [0, 1] are nondecreas-
ing, continuous and surjective, then all the functions Gk exist, are nondecreasing
and continuous, moreover, Gk(0) = 0.

Set en := 1. Then Fn(en) = 1. Lemma 2 (ii) implies that there exist

en−1 ∈ [0, en] such that Gn−1(en−1) + Fn(en−1) = Fn(en);

en−2 ∈ [0, en−1] such that Gn−2(en−2) + Fn−1(en−2) = Fn−1(en−1);

. . .

ej−1 ∈ [0, ej] such that Gj−1(ej−1) + Fj(ej−1) = Fj(ej);

. . .

e1 ∈ [0, e2] such that G1(e1) + F2(e1) = F2(e2);

Moreover, we claim that for each j = 2, 3, . . . , n− 1:

Gj(ej) = Gj−1(ej−1)

Let us denote
xj−1 = ((Gj−1 + Fj)

− ◦ Fj)(ej). (6)

Then

Gj−1(xj−1) + Fj(xj−1) = (Gj−1 + Fj)(xj−1)

= ((Gj−1 + Fj) ◦ (Gj−1 + Fj)
− ◦ Fj)(ej) = Fj(ej)

by Lemma 1(iii). So we have

Gj−1(xj−1) + Fj(xj−1) = Fj(ej),

which together with the equality

Gj−1(ej−1) + Fj(ej−1) = Fj(ej)

implies Gj−1(xj−1) = Gj−1(ej−1), as functions Gj−1 and Fj are nondecreasing.
After substituting (6) for xj−1 and using the definition of function Gj, this implies

Gj−1(ej−1) = Gj−1(xj−1) = Gj−1((Gj−1 + Fj)
− ◦ Fj)(ej) = Gj(ej)
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and so the claim is proved.
Using the claim and equality F1 = G1, we get that for each j = 1, 2, . . . , n:

F1(e1) = Fj(ej)− Fj(ej−1)

and we have proved that a solution 0 ≤ e1 ≤ e2 ≤ · · · ≤ en−1 ≤ 1 for the system
of equations (1) exists.
Translating this result into the language of cake cutting and taking into ac-

count that the same argument can be made for any other player’s order, we get
as our main result the following assertion.

Theorem 1 For any number of players n there exists a simple equitable division
with each players’ order.

We can also consider the case when the probability density functions of all
players are strictly positive. Then one can add to the assumptions of Lemma
2 that function f is strictly increasing and strengthen assertion (ii) to say-
ing that for each y ∈ [0, 1] a unique point x fulfilling the desired equality ex-
ists. Applying this stronger assertion, we get that the inductively defined points
en−1, en−2, . . . , e1 are also uniquelly determined, so the previous theorem can also
be formulated in a stronger way.

Theorem 2 Let the probability density function of each among n players be
strictly positive. Then for any players’ order a unique simple equitable division
exists.

4 Equitability, proportionality and envy-freeness

In the previous section we have proved that an equitable simple division exists
for any players’ order. However, in an equitable division all players may get as
little as zero, as demonstrated by Example 1. Such a division might be fair,
but for sure not very efficient. Fortunately, as shown in [9], there always exists a
players’ order π, in which a proportional simple division exists. Arranging players
according to π, a simple division exists that is simultaneously proportional and
equitable.

Lemma 4 Let D′ be any simple cake division for n players with players’ order
π such that player i receives a piece with value Ui(D′

i). Then any ESD D with
players’ order π fulfills

Ui(Di) ≥ min{Uj(D
′
j), j = 1, 2, ..., n}.
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Proof. To avoid an awkward work with indices, let us suppose, without loss
of generality, that π is the identity permutation. Denote the cutpoints of the
division D′ by (d1, d2, ..., dn−1) and the cutpoints of the equitable cake division
D in the players’ order π by (e1, e2, . . . , en−1). Since D is equitable, it suffices to
show that Ui(Di) ≥ Ui(D′

i) for some i.
We distinguish three cases:

(a) e1 ≥ d1. Then [0, d1] ⊂ [0, e1] and so U1(D1) ≥ U1(D′
1).

(b) If there exists k such that ej < dj for each j = 1, 2, ..., k − 1 and ek ≥ dk

then [dk−1, dk] ⊂ [ek−1, ek]. Hence Uk(Dk) ≥ Uk(D′
k).

(c) ej < dj for each j = 1, 2, ..n − 1. Then [dn−1, 1] ⊂ [en−1, 1] therefore
Un(Dn) ≥ Un(D′

n).

Theorem 3 For any number of players n there exists a players’ order that admits
a simple division that is simultaneously proportional and equitable.

Example 2. On the other hand, there exist players’ valuations that do not
admit an ESD that is simultaneously envy free. This example is taken from
Brams, Jones and Klamler [3]. To be self-contained, we give here a complete
argument to show the claim.
The probability density of player 1 is everywhere equal to 1, for players 2 and 3
we have:

f2(t) =

{
−4t+ 2 if t ∈ [0, 1/2]
4t+ 2 if t ∈ (1/2, 1] f3(t) =

{
−2t+ 3/2 if t ∈ [0, 1/2]
2t− 1/2 if t ∈ (1/2, 1]

Let us suppose that the the cutpoints are x and y. As the densities are symmetric,
we can simplify the notation by considering interval [0, y] instead of the interval
[y, 1] that was assigned to the right player. Further, since the left player is not
allowed to envy the right player and conversely, we must have y = x.
Suppose that player 1 is in the middle. Equitability for players 2 and 3 implies∫ x

0
(−4t+ 2)dt = −2x2 + 2x =

∫ x

0
(−2t+ 3/2)dt = −x2 + 3x/2.

This is only possible if x = 0 (in this case player 1 would receive the whole
interval) or if x = 1/2 (now player 1 gets 0). So in neither case player 1 can
achieve the same value as the others two.
Hence the middle piece must be given either to player 2 or to player 3. The

former case leads to the equation∫ x

0
(−2t+ 3/2)dt = −x2 + 3x/2 = x
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and the latter to ∫ x

0
(−4t+ 2)dt = −2x2 + 2x = x.

These equations have the roots x = 0, 1/2 and x = 0, 1, respectively, which again
does not correspond to an equitable division.

5 Conclusion

In this paper we have proved that for any number of players an equitable simple
division (ESD) exists for any players’ order. This implies that for at least one
players’ order an ESD exists that simultaneously fulfills proportionality. However,
we used an example of [3] to recall that in some cases no ESD exists that is also
envy-free.
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