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Abstract

The extended growth curve model is discussed in this paper. There
are two versions of the model studied in the literature, which differ
in the way how column spaces are nested. The nesting is applied
either to the between-individuals or to the within-individuals design
matrices. Although both versions are equivalent via reparametrization
the properties of estimators cannot be transferred directly because of
non-linearity of estimators. Since in many applications the between-
individuals matrices are one-way ANOVA matrices, it is reasonable to
assume orthogonal column spaces of between-individuals design ma-
trices along with nested column spaces of within-individuals design
matrices. We present the maximum likelihood estimators and their
basic moments for the model with such orthogonality condition.

Keywords: Extended growth curve model; maximum likelihood estima-
tors; orthogonality; moments

1 Introduction

In this paper, R(A) denotes the column space of a matrix A, r(A) its rank,
and Tr(A) its trace. PA = A(A′A)−A′ and QA = I − PA denote the orthog-
onal projection matrices onto the column space R(A) and onto its orthogonal
complement, respectively. PB

A = A(A′BA)−A′B and QB
A = I − PB

A denote cor-
responding projection matrices in the metric given by a positive definite matrix
B. If A is a random matrix then the variance-covariance matrix Var[A] is defined
as Var[vecA], where vec is the column-wise vectorization operator. Symbol ⊗ de-
notes the Kronecker product. Symbol

∏j
l=iAl for j < i denotes decreasing-indices

product AiAi−1 . . .Aj+1Aj of a sequence of matrices.
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This paper deals with the model known as the extended growth curve model
(EGCM) with fixed effects (also called the sum-of-profiles model):

Y =

k∑

i=1

XiBiZ
′

i + E , vec E ∼ Nn×p (0,Σ⊗ In) . (1)

where Y ∈ R
n×p is a matrix of independent p-variate observations, Xi ∈ R

n×ri

and Zi ∈ R
p×qi, i = 1, . . . , k, are between-individuals and within-individuals design

matrices, respectively. Bi ∈ R
qi×ri , i = 1, . . . , k, are matrices of unknown param-

eters. The matrix E is a matrix of random errors whose rows are independently
normally distributed with unknown common covariance matrix Σ > 0.

This model was introduced by Verbyla and Venables [9] as a generalized version
of the growth curve model (GCM), which has only one profile, i.e. Y = XBZ′+E.
They gave several examples how this model may arise. Since the maximum like-
lihood equations cannot be solved explicitly in this model, they also discussed an
iterative algorithm for obtaining the maximum likelihood estimators (MLEs). Von
Rosen [6] derived the explicit MLEs of unknown parameters under the additional
nested subspace condition of between-individuals matrices

R (Xk) ⊆ · · · ⊆ R (X1) , (2)

while nothing is said about different within-individuals matrices Zi’s. Many results
have been presented assuming this condition, such as uniqueness conditions for
MLEs or moments of estimators (see e.g. Kollo and Rosen [3]). However, there are
situations where the column spaces of between-individuals design matrices should
be disjoint or at least the intersection should be as small as possible. Filipiak
and Rosen [1] discussed the model with the nested subspace condition of within-
individuals design matrices

R (Zk) ⊆ · · · ⊆ R (Z1) . (3)

The conditions (2) and (3) lead to different parametrizations of model (1), however,
Filipiak and Rosen [1] showed that via reparametrization one can derive model with
condition (3) from model with condition (2) or vice versa, i.e. the two models
are equivalent. Let us refer the model with condition (2) as Model I, and with
condition (3) as Model II. Because of non-linearity of estimators the properties of
estimators from one model cannot be transmitted directly to the other one. In
Model II Filipiak and Rosen [1] gave also the MLEs of unknown parameters for
the three component model and they discussed the uniqueness conditions and the
moments for MLEs.

Hu [2] came up with a modification of Model I, assuming that the column
spaces of between-individuals design matrices are orthogonal, i.e.

X′

iXj = 0 ∀ i 6= j, (4)
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while no ordering among R(Zi)’s is assumed. His idea is to separate groups rather
then models. The idea is illustrated in Example 1. This example also demon-
strates that it is very natural to assume the nested subspace condition of within-
individuals design matrices Zi’s in the case of orthogonal between-individuals de-
sign matrices.

Example 1. This is Example 4.1.2, p. 374, given in Kollo and Rosen [3]. Let

there be 3 treatment groups of animals, with nj animals in the jth group, and each
group is subjected to different treatment conditions. The aim is to investigate the
weight increase of the animals in all groups. All animals have been measured at
the same p time points (say tr, r = 1, . . . , p). The expected growth curve for each
treatment group is supposed to be a polynomial in time, and the groups differ by
the order of the polynomial. Thus, the means of the three treatment groups at
time t are

µ1 = β11 + β21t+ · · ·+ β(q−2)1t
q−3,

µ2 = β12 + β22t+ · · ·+ β(q−2)2t
q−3 + β(q−1)2t

q−2, (5)

µ3 = β13 + β23t+ · · ·+ β(q−2)3t
q−3 + β(q−1)3t

q−2 + βq3t
q−1.

In order to describe these different responses, we can use the model

Y = X1B1Z
′

1 +X2B2Z
′

2 +X3B3Z
′

3 + E , (6)

where Yn×p is the observation matrix, En×p is the matrix of random errors and
the remaining matrices are defined as below:

X1 =



1n1

0n1
0n1

0n2
1n2

0n2

0n3
0n3

1n3


 , X2 =



0n1

0n1

1n2
0n2

0n3
1n3


 , X3 =



0n1

0n2

1n3


 ,

B1 =



β11 β21 · · · β(q−2)1

β12 β22 · · · β(q−2)2

β13 β23 · · · β(q−2)3


 , B2 =

(
β(q−1)2

β(q−1)3

)
, B3 =

(
βq3

)
,

Z1 =




1 t1 · · · t
q−3
1

1 t2 · · · t
q−3
2

...
...

. . .
...

1 tp · · · t
q−3
p


 , Z2 =




t
q−2
1

t
q−2
2
...

t
q−2
p


 , Z3 =




t
q−1
1

t
q−1
2
...

t
q−1
p


 .

This is clearly Model I, since R (X3) ⊆ R (X2) ⊆ R (X1). Notice that it is not
possible to model the mean structure with only one component, i.e. single-profile
GCM. We say that Model I separates models, since every component contains
polynomial growth of different order.

The same mean structure (5) could be modeled by model (6) with the following
matrices:

X1 =



1n1

0n2

0n3


 , X2 =



0n1

1n2

0n3


 , X3 =



0n1

0n2

1n3


 ,
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B1 =
(
β11 β21 · · · β(q−2)1

)
,

B2 =
(
β12 β22 · · · β(q−2)2 β(q−1)2

)
,

B3 =
(
β13 β23 · · · β(q−2)3 β(q−1)3 βq3

)
,

Z1 =




1 t1 · · · t
q−3
1

1 t2 · · · t
q−3
2

...
...

. . .
...

1 tp · · · t
q−3
p


 , Z2 =




1 t1 · · · t
q−3
1 t

q−2
1

1 t2 · · · t
q−3
2 t

q−2
2

...
...

. . .
...

...

1 tp · · · t
q−3
p t

q−2
p


 ,

Z3 =




1 t1 · · · t
q−3
1 t

q−2
1 t

q−1
1

1 t2 · · · t
q−3
2 t

q−2
2 t

q−1
2

...
...

. . .
...

...
...

1 tp · · · t
q−3
p t

q−2
p t

q−1
p


 .

Here we have a model similar to Model II but with opposite order of spaces, since
R (Z1) ⊆ R (Z2) ⊆ R (Z3). We say that this model separates groups (or treat-
ments), since each component models growth of only one group of observations.
Moreover, the column spaces of between-individuals matrices in this model are
orthogonal, i.e. X′

iXj = 0 for i 6= j.

The model with assumption of nested column spaces of within-individuals de-
sign matrices and with an additional assumption of orthogonal between-individuals
design matrices will be referred as Model III:

Y =

k∑

i=1

XiBiZ
′

i + E , vec(E) ∼ Nn×p (0,Σ⊗ In) , (7)

X′

iXj = 0 ∀ i 6= j,

R (Z1) ⊆ · · · ⊆ R (Zk) .

In order to have all parameters of interest estimable, we also assume that
n >

∑k
i=1 r (Xi) + p.

ECGM with Hu’s condition, i.e. Model III, is much easier to handle in the case
of known variance-covariance matrix Σ. To illustrate the situation, let us look at
two components Model I. IfX1,X2, Z1,Z2 are of full rank andR (Z1)∩R (Z2) = ∅,
then closed form of unbiased least-squares estimators of B1,B2 is known to be

B̂1 =
(
X′

1X1

)
−1

X′

1YΣ−1Z1

(
Z′

1Σ
−1Z1

)
−1

−

−
(
X′

1X1

)
−1

X′

1PX2
Y

(
P

Σ−1Q
Σ
−1

Z1

Z2

)′

Σ−1Z1

(
Z′

1Σ
−1Z1

)
−1

,

B̂2 =
(
X′

2X2

)
−1

X′

2YΣ−1Z2

(
Z′

2Σ
−1QΣ−1

Z1
Z2

)
−1

,
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see Žežula [10]. The situation is much more complicated for more than two com-
ponents. On the other hand, explicit form of the least-squares estimator of all Bi’s
in Model III with arbitrary number of components is known to be

B̂i =
(
X′

iXi

)
−1

X′

iYΣ−1Zi

(
Z′

iΣ
−1Zi

)
−1

,

see [2].
The aim of this paper is to present results for Model III. We derive the max-

imum likelihood estimators of unknown parameters as well as basic moments of
these estimators. The benefit of Hu’s condition appears mainly in deriving the
variances of estimators of location parameters, since the maximum likelihood es-
timators do not depend on each other (as is the case in Model I and Model II).
Also, these variances in Model I and Model II are known only for three component
model, while we are able to solve this task for general k-component model in Model
III.

2 Maximum likelihood estimators

The maximum likelihood estimators of unknown parameters Bi, i = 1, . . . , k, and
Σ for Model I are given in Kollo and Rosen [3], Theorem 4.1.7. For Model II
Filipiak and Rosen [1] derived the MLEs only for the three component model.
The next theorem shows the MLEs in Model III.

Theorem 1. Let us consider Model III, and denote X = (X1,X2, . . . ,Xk). The
maximum likelihood estimators of unknown parameters in this model are

B̂i =
(
X′

iXi

)
−

X′

iYS−1
i Zi

(
Z′

iS
−1
i Zi

)
−

+

+Gi − (X′

iXi)
−X′

iXiGiZ
′

iS
−1
i Zi(Z

′

iS
−1
i Zi)

−,

nΣ̂ =

(
Y −

k∑

i=1

XiB̂iZ
′

i

)′(
Y −

k∑

i=1

XiB̂iZ
′

i

)
=

= S1 +
k∑

i=1

Q
S−1

i
Zi

Y′PXiY

(
Q

S−1

i
Zi

)
′

,

where Gi, i = 1, . . . , k, are arbitrary ri × qi matrices, S1 = Y′QXY and Si =

Si−1 +Q
S−1

i−1

Zi−1
Y′PXi−1

Y

(
Q

S−1

i−1

Zi−1

)
′

for i = 2, . . . , k.

Proof. The likelihood function equals

L(B1, . . . ,Bk,Σ;Y) = (2π)−
np
2 |Σ|−

n
2 ×

× e
−

1

2
Tr

[

Σ
−1

(

Y−

k
∑

i=1

XiBiZ
′

i

)

′
(

Y−

k
∑

i=1

XiBiZ
′

i

)]

.
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Differentiating the log-likelihood lnL with respect to unknown parameters and
setting this derivatives to zero, we get MLE’s as the solutions of the following
likelihood equations:

0 = X′

i

(
Y −XiBiZ

′

i

)
Σ−1Zi, i = 1, . . . , k, (8)

nΣ =

(
Y −

k∑

i=1

XiBiZ
′

i

)′(
Y −

k∑

i=1

XiBiZ
′

i

)
. (9)

According to Puntanen et al. [5], Theorem 11, p. 267, the general solution of
equation (8) is:

Bi =
(
X′

iXi

)
−

X′

iYΣ−1Zi

(
Z′

iΣ
−1Zi

)
−

+ (10)

+Gi − (X′

iXi)
−X′

iXiGiZ
′

iΣ
−1Zi(Z

′

iΣ
−1Zi)

−,

where Gi is arbitrary matrix of appropriate order.
Since the column spaces of matrices Xi are orthogonal, it holds PX =∑k

i=1PXi . Then we can rewrite the equation (9) as

nΣ = S1 +

k∑

i=1

(
PXiY −XiBiZ

′

i

)
′
(
PXiY −XiBiZ

′

i

)
,

where S1 = Y′QXY, and replacing Bi by formula (10) we obtain

nΣ = S1 +

k∑

i=1

QΣ−1

Zi
Y′PXiY

(
QΣ−1

Zi

)
′

. (11)

Because of nested subspace condition R (Z1) ⊆ · · · ⊆ R (Zk) it is easy to see that(
QΣ−1

Zi

)
′

Σ−1Zj = 0 for j ≤ i. Therefore we first multiply (11) by Σ−1Z1 and we

obtain nZ1 = S1Σ
−1Z1 which is equivalent to

Σ−1Z1 = nS−1
1 Z1.

Replacing this expression into (11) we have

nΣ = S2 +

k∑

i=2

QΣ−1

Zi
Y′PXiY

(
QΣ−1

Zi

)
′

,

where S2 = S1 + Q
S−1
1

Z1
Y′PX1

Y

(
Q

S−1
1

Z1

)
′

. Now we multiply last expression by

Σ−1Z2 and obtain Σ−1Z2 = nS−1
2 Z2. Continuing this process we finally obtain

that
Σ−1Zi = nS−1

i Zi, i = 1, 2, . . . , k, (12)

where Si = Si−1 +Q
S−1
i−1

Zi−1
Y′PXi−1

Y

(
Q

S−1
i−1

Zi−1

)
′

for i = 2, . . . , k, and S1 = Y′QXY.

Finally replacing (12) into (10) and (11) we obtain the desired result for B̂i and
nΣ̂.
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It is obvious that Σ̂ is unique. However, estimators B̂i are not. For the
uniqueness conditions in Model I see e.g. [8, 3] and for Model II they are given
only for three-component model in Filipiak and Rosen [1]. For Model III the
uniqueness conditions are given in the next theorem.

Theorem 2. The maximum likelihood estimator B̂i, i = 1, . . . , k, is unique if and
only if Xi and Zi are of full rank, i.e. r(Xi) = ri and r(Zi) = qi. In that case

B̂i =
(
X′

iXi

)
−1

X′

iYS−1
i Zi

(
Z′

iS
−1
i Zi

)−1
,

where Si is given in Theorem 1.

Proof. It follows from Theorem 1 that B̂i is unique if and only if

Gi = (X′

iXi)
−X′

iXiGiZ
′

iS
−1
i Zi(Z

′

iS
−1
i Zi)

−

for all g-inverses, which holds if and only if Xi and Zi are of full rank.

3 Basic moments of estimators

In the following we will assume that design matrices Xi and Zi are of full rank.
The moments of maximum likelihood estimators in Model I are given Kollo and
Rosen [3] and for Model II in Filipiak and Rosen [1]. However, the variance of
estimators were found only for three-component model, since for k components
the calculations are very tedious in general. In Model III the moments can be
derived for general k components model.

Lemma 3. Let A and V > 0 be any p× q and p× p matrices, respectively. Then

(i) PV −1

A =
(
QV

QA

)′
.

(ii) PV
A =

(
QV −1

QA

)
′

.

(iii) V−1 = A (A′VA)
−
A′ +V−1QA

(
QAV

−1QA

)
−

QAV
−1

Proof. Let start with (i). Following Markiewicz [4], proof of Lemma 1, it is easy
to see that PV −1/2AV

1/2QA = 0. Then

PV 1/2QA
= V1/2QA (QAVQA)

−
QAV

1/2 =

= (I−PV −1/2A)V
1/2QA (QAVQA)

−
QAV

1/2 =

= (I−PV −1/2A)PV 1/2QA

However, since r
(
V1/2QA

)
= n− r

(
V−1/2A

)
it follows that

PV 1/2QA
= (I−PV −1/2A) = QV −1/2A
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which is equivalent with PV −1/2A = QV 1/2QA
. Then

PV −1

A = A
(
A′V−1A

)
−

A′V−1 =

= V1/2V−1/2A
(
A′V−1/2V−1/2A

)
−

A′V−1/2V−1/2 =

= V1/2PV −1/2AV
−1/2 = V1/2QV 1/2QA

V−1/2 =

= I−V1/2V1/2QA

(
QAV

1/2V1/2QA

)
−

QAV
1/2V−1/2 =

= I−VQA (QAVQA)
−
QA =

(
QV

QA

)′
.

Similarly, (ii) can be proved. For (iii) observe that A (A′VA)
−
A′ = PV

AV
−1.

Then using (ii) we have

A
(
A′VA

)
−

A′ =
(
QV −1

QA

)
′

V−1 = V−1 −
(
PV −1

QA

)
′

V−1 =

= V−1 −V−1QA

(
QAV

−1QA

)
−

QAV
−1.

Lemma 4. Let us consider Model III, and define W1 = Σ−1/2S1Σ
−1/2, Wi =

Wi−1 +Ni−1 for i = 2, . . . , k, where S1 = E
′QXE and Ni = Σ−1/2

E
′PXiEΣ

−1/2.
Then,

Wi ∼ Wp


n−

k∑

j=i

r(Xj), Ip


 ∀ i = 1, . . . , k.

Proof. Denoting H = EΣ−1/2 it is easy to see that H ∼ Nn×p (0, In, Ip), i.e.
vecH ∼ N(0, Ip ⊗ In). Then it is obvious that

W1 = H′QXH ∼ Wp


n−

k∑

j=1

r(Xj), Ip


 .

Observe that denoting Ti = QX +
∑i−1

j=1PXj = In −
∑k

j=iPXj we can write

Wi = H′QXH+
i−1∑

j=1

H′PXjH = H′TiH (13)

for i = 2, . . . , k. Since matrix Ti is symmetric and idempotent with r (Ti) =
n−

∑k
j=i r (Xj), the result follows.

Lemma 5. Let us consider Model III with W1, . . . ,Wk defined as in Lemma 4.
Let Di = Σ1/2QZi

, i = 1, . . . , k. Then for any i, j, such that 1 ≤ j < i < k, it
holds

Tr

(
E

[
P

Wi
Di

· · ·P
Wj+1

Dj+1
Dj

(
D′

jWjDj

)
−

D′

j

(
P

Wj+1

Dj+1

)
′

· · ·
(
P

Wi
Di

)
′

])
=

= djdj+1 . . . di−1ci,
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where dj =
n−
∑k

l=j+1
r(Xl)−r(Dj)−1

n−
∑k

l=j r(Xl)−r(Dj)−1
and ci =

r(Di)
n−
∑k

l=i r(Xl)−r(Di)−1
.

Proof. It is clear that Di is a p × p matrix of rank r (Di) = p − r (Zi), thus it is
not of full rank. However, Di (D

′

iWiDi)
−
D′

iWi is a projection matrix and such
a matrix depends only on the column space, therefore matrix Di can be replaced
by any ∆i ∈ R

p×r(Di) such that R (Di) = R (∆i) and

Di

(
D′

iWiDi

)
−

D′

i = ∆i

(
∆′

iWi∆i

)
−1

∆′

i.

This implies

Tr

(
E

[
P

Wi
Di

· · ·P
Wj+1

Dj+1
Dj

(
D′

jWjDj

)
−

D′

j

(
P

Wj+1

Dj+1

)
′

· · ·
(
P

Wi
Di

)
′

])
=

= Tr

(
E

[
P

Wi
∆i

· · ·P
Wj+1

∆j+1
∆j

(
∆′

jWj∆j

)
−1

∆′

j

(
P

Wj+1

∆j+1

)
′

· · ·
(
P

Wi
∆i

)
′

])
. (14)

Since the column spaces of Zi’s are nested, we have R (∆k) ⊆ · · · ⊆ R (∆1).
Therefore for any 1 ≤ j < k there exists matrix Uj such that ∆j+1 = ∆jUj. Let
us denote

Kj =
(
∆′

jWj+1∆j

)
−1/2

(∆′

jWj∆j)
(
∆′

jWj+1∆j

)
−1/2

.

Lemma 4 implies that ∆′

jWj∆j ∼ Wr(∆j)

(
n−

∑k
l=j r(Xl),∆

′

j∆j

)
and it is

independent of ∆′

jH
′PXjH∆j ∼ Wr(∆j)

(
r(Xj),∆

′

j∆j

)
due to the orthogonal-

ity of column spaces of Xi’s. Since Wj+1 = Wj + H′PXjH, it follows that
Kj has a multivariate beta distribution of type I (see e.g. Kollo and Rosen [3],

Theorem 2.4.8 and Definition 2.4.2, p. 248–249). Then E
[
K−1

j

]
= djI, where

dj =
n−
∑k

l=j+1
r(Xl)−r(∆j)−1

n−
∑k

l=j r(Xl)−r(∆j)−1
(see e.g. von Rosen [7], Lemma 2.3 (vi)). Taking

only the middle part of the right hand side of (14) we may write

P
Wj+1

∆j+1
∆j

(
∆′

jWj∆j

)
−1

∆′

j

(
P

Wj+1

∆j+1

)
′

=

= ∆j+1

(
∆′

j+1Wj+1∆j+1

)
−1

U′

j

(
∆′

jWj+1∆j

)1/2
K−1

j ×

×
(
∆′

jWj+1∆j

)1/2
Uj

(
∆′

j+1Wj+1∆j+1

)
−1

∆′

j+1.

According to Kollo and Rosen [3], Corollary 2.4.8.1, p. 250, Kj is independent of
∆′

jWj+1∆j . Then Kj is also independent of ∆′

lWl∆l for l ≥ j + 1, since there
exist matrix Ul,j+1 such that

∆′

lWl∆l = U′

l,j+1


∆′

jWj+1∆j +∆jH
′

l−1∑

s=j+1

PXsH∆j


Ul,j+1,
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and Wj+1 and H′
∑l−1

s=j+1PXsH are independent. Thus, denoting

C = P
Wi
∆i

· · ·P
Wj+2

∆j+2
∆j+1

(
∆′

j+1Wj+1∆j+1

)
−1

U′

j

(
∆′

jWj+1∆j

)1/2
,

C is independent of Kj and therefore

Tr

(
E

[
P

Wi
∆i

· · ·P
Wj+1

∆j+1
∆j

(
∆′

jWj∆j

)
−1

∆′

j

(
P

Wj+1

∆j+1

)
′

· · ·
(
P

Wi
∆i

)
′

])
=

= Tr
(
E
[
CK−1

j C′

])
= Tr

(
E
[
K−1

j C′C
])

= Tr
(
E
[
K−1

j

]
E
[
C′C

])
=

= dj Tr
(
E
[
C′C

])
= dj Tr

(
E
[
CC′

])
=

= dj Tr
(
E
[
P

Wi
∆i

· · ·P
Wj+2

∆j+2
∆j+1

(
∆′

j+1Wj+1∆j+1

)
−1

∆′

j+1 ×

×
(
P

Wj+1

∆j+2

)
′

· · ·
(
P

Wi
∆i

)
′

])
.

We can repeatedly apply the same technique, and at the end we obtain

Tr

(
E

[
P

Wi
∆i

· · ·P
Wj+1

∆j+1
∆j

(
∆′

jWj∆j

)
−1

∆′

j

(
P

Wj+1

∆j+1

)
′

· · ·
(
P

Wi
∆i

)
′

])
=

= djdj+1 . . . di−1 Tr
(
E
[
∆i

(
∆′

iWi∆i

)
−1

∆′

i

])
=

= djdj+1 . . . di−1
r (∆i)

n−
∑k

l=i r (Xl)− r (∆i)− 1
.

where the last expectation is due to Theorem 2.4.14 (iii) from Kollo and Rosen
[3], p. 257. The result follows since r (∆i) = r (Di) for all i.

Theorem 6. B̂i is unbiased estimator of Bi, i = 1, . . . , k, i.e. E[B̂i] = Bi. The
variance of the estimator is

Var
[
B̂i

]
=

(
(1 + ci)

(
Z′

iΣ
−1Zi

)
−1

+
i−1∑

j=1

(dj − 1)dj+1 . . . di−1ci×

×
(
Z′

iZi

)
−1

Z′

iZj

(
Z′

jΣ
−1Zj

)
−1

Z′

jZi

(
Z′

iZi

)
−1

)
⊗
(
X′

iXi

)
−1

,

where ci =
p−r(Zi)

n−
∑k

l=i r(Xl)−p+r(Zi)−1
and dj =

n−
∑k

l=j+1
r(Xl)−p+r(Zj)−1

n−
∑k

l=j r(Xl)−p+r(Zj)−1
for 1 ≤

j < i .

Proof. First observe that S1, . . . ,Sk could be written by means of residuals, i.e.

S1 = E
′QXE ,

Si = Si−1 +Q
S−1

i−1

Zi−1
E
′PXi−1

E

(
Q

S−1

i−1

Zi−1

)
′

, i = 2, . . . , k.
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Then it is easy to see that

B̂i −Bi =
(
X′

iXi

)
−1

X′

iES
−1
i Zi

(
Z′

iS
−1
i Zi

)
−1

. (15)

From Kollo and Rosen [3], Theorem 2.2.4. (iv), p. 196, it follows that X′

iE and Si

are independent, therefore

E
[
B̂i −Bi

]
= E

[(
X′

iXi

)
−1

X′

iE

]
· E
[
S−1
i Zi

(
Z′

iS
−1
i Zi

)−1
]
= 0.

Now, let us derive the variance of B̂i. Using (15), Lemma 3 and the properties
of vec operator we have

Var
[
B̂i

]
= E

[(
Z′

iS
−1
i Zi

)
−1

Z′

iS
−1
i ΣS−1

i Zi

(
Z′

iS
−1
i Zi

)
−1
]
⊗
(
X′

iXi

)
−1

=

=
(
Z′

iZi

)
−1

Z′

iE

[
P

S−1

i
Zi

Σ

(
P

S−1

i
Zi

)
′
]
Zi

(
Z′

iZi

)
−1

⊗
(
X′

iXi

)
−1

=

=
(
Z′

iZi

)
−1

Z′

iE

[(
Q

Si
QZi

)
′

ΣQ
Si
QZi

]
Zi

(
Z′

iZi

)
−1

⊗
(
X′

iXi

)
−1

=

df
=
(
Z′

iZi

)
−1

Z′

iFiZi

(
Z′

iZi

)
−1

⊗
(
X′

iXi

)
−1

. (16)

First let i = 1. Since S1 ∼ Wp

(
n−

∑k
j=1 r(Xj),Σ

)
, via calculations similar

to Kollo and Rosen [3][(4.2.13)-(4.2.23), p. 412-413] we obtain

Var
[
B̂1

]
= E

[(
Z′

1S
−1
1 Z1

)
−1

Z′

1S
−1
1 ΣS−1

1 Z1

(
Z′

1S
−1
1 Z1

)
−1
]
⊗
(
X′

1X1

)
−1

=

=
n−

∑k
j=1 r(Xj)− 1

n−
∑k

j=1 r(Xj)− p+ r(Z1)− 1

(
Z′

1Σ
−1Z1

)
−1

⊗
(
X′

1X1

)
−1

.

Now let i > 1. Let us define

V1 = Σ−1/2S1Σ
−1/2,

and Vi = Vi−1 +
(
P

Vi−1

Di−1

)
′

Ni−1P
Vi−1

Di−1
, for i = 2, . . . , k,

where Ni = Σ−1/2
E
′PXiEΣ

−1/2 ∀i as in Lemma 4, and Di = Σ1/2QZi
∀i as in

Lemma 5. Then, we can re-write the expression for Fi as

Fi = Σ− E

[(
P

Si
QZi

)
′

Σ

]
− E

[
ΣP

Si
QZi

]
+ E

[(
P

Si
QZi

)
′

ΣP
Si
QZi

]
=

= Σ−Σ1/2

(
E
[
P

Vi
Di

]
′

+ E
[
P

Vi
Di

]
− E

[(
P

Vi
Di

)
′

P
Vi
Di

])
Σ1/2

Since R(Dk) ⊆ · · · ⊆ R(D1), for any regular matrix A we obtain

D′

iViDi = D′

iWiDi, (17)

D′

iViDi−1 = D′

iWiDi−1,

PA
Di
Dj = Dj, ∀j > i.
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Using these relations we can write

P
Vi
Di

= Di

(
D′

iViDi

)
−

D′

iVi = Di

(
D′

iWiDi

)
−

D′

i ×

×
(
Vi−1 +Ni−1Di−1

(
D′

i−1Wi−1Di−1

)
−

D′

i−1Vi−1

)
=

= Di

(
D′

iWiDi

)
−

D′

i ×

×
(
I+Ni−1Di−1

(
D′

i−1Wi−1Di−1

)
−

D′

i−1

)
Vi−1 =

= Di

(
D′

iWiDi

)
−

D′

i ×

×
(
I+Ni−1Di−1

(
D′

i−1Wi−1Di−1

)
−

D′

i−1

)(
P

Vi−1

Di−1

)
′

Vi−1 =

= Di

(
D′

iWiDi

)
−

D′

i ×

×
(
I+Ni−1Di−1

(
D′

i−1Wi−1Di−1

)
−

D′

i−1

)
Vi−1P

Vi−1

Di−1
=

= Di

(
D′

iWiDi

)
−

D′

iViDi−1

(
D′

i−1Vi−1Di−1

)
−

D′

i−1Vi−1 =

= Di

(
D′

iWiDi

)
−

D′

iWiDi−1

(
D′

i−1Vi−1Di−1

)
−

D′

i−1Vi−1 =

= P
Wi
Di

P
Vi−1

Di−1
. (18)

Then, using (13) we get for any 2 ≤ j ≤ i

P
Vi
Di

(
PDj−1

−PDj

)
= P

Wi
Di

P
Wi−1

Di−1
· · ·P

Wj+1

Dj+1
P

Vj

Dj

(
PDj−1

−PDj

)
=

= P
Wi
Di

P
Wi−1

Di−1
· · ·P

Wj+1

Dj+1
P

Wj

Dj

(
PDj−1

−PDj

)
=

j∏

l=i

P
Wl
Dl

(
PDj−1

−PDj

)
=

=

j∏

l=i

Dl(D
′

lH
′TlHDl)

−D′

lH
′TlH

(
PDj−1

−PDj

)
.

Since H
(
PDj−1

−PDj

)
is independent of HDl for any l ≥ j, we have

E
[
P

Vi
Di

(
PDj−1

−PDj

)]
=

= E

[
j∏

l=i

Dl(D
′

lH
′TlHDl)

−D′

lH
′Tl

]
E
[
H
(
PDj−1

−PDj

)]
︸ ︷︷ ︸

=0

= 0. (19)
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Similarly since V1 = W1 and HQD1
is independent of HDi for all i ≥ 1 we obtain

E
[
P

Vi
Di
QD1

]
= E




1∏

j=i

P
Wj

Dj
QD1


 = (20)

= E




1∏

j=i

Dj(D
′

jH
′TjHDj)

−D′

jH
′TjHQD1


 =

= E




1∏

j=i

Dj(D
′

jH
′TjHDj)

−D′

jH
′Tj


E

[
HQD1

]
︸ ︷︷ ︸

=0

= 0.

It is easy to see that PVi
Di
PDi = PDi , therefore

E
[
P

Vi
Di
PDi

]
= PDi . (21)

Observe that I = PDi +
∑i

j=2

(
PDj−1

−PDj

)
+QD1

. Therefore, using (19),
(20) and (21) we obtain

E
[
P

Vi
Di

]
= E

[
P

Vi
Di
PDi

]
+

i∑

j=2

E
[
P

Vi
Di

(
PDj−1

−PDj

)]
+ E

[
P

Vi
Di
QD1

]
=

= PDi .

Let us now look at
(
P

Vi
Di

)
′

P
Vi
Di
. Since P

Vi
Di
PDi = PDi and PDiP

Vi
Di

= P
Vi
Di
, it

holds

E

[
PDi

(
P

Vi
Di

)
′

P
Vi
Di
QD1

]
= E

[
P

Vi
Di
QD1

]
= 0.

Using similar principle as in (19) and (20), we obtain

E

[(
PDj−1

−PDj

) (
P

Vi
Di

)
′

P
Vi
Di
QD1

]
= 0, j = 2, . . . , i,

E

[(
PDj−1

−PDj

)(
P

Vi
Di

)
′

P
Vi
Di
PDi

]
= 0, j = 2, . . . , i,

E

[(
PDj−1

−PDj

) (
P

Vi
Di

)
′

P
Vi
Di

(
PDk−1

−PDk

)]
= 0, k, j = 2, . . . , i, k 6= j.

Therefore we can write

E

[(
P

Vi
Di

)
′

P
Vi
Di

]
= E

[
PDi

(
P

Vi
Di

)
′

P
Vi
Di
PDi

]
+

+

i∑

j=2

E

[(
PDj−1

−PDj

) (
P

Vi
Di

)
′

P
Vi
Di

(
PDj−1

−PDj

)]
+

+ E

[
QD1

(
P

Vi
Di

)
′

P
Vi
Di
QD1

]
. (22)
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Trivially, E

[
PDi

(
P

Vi
Di

)
′

P
Vi
Di
PDi

]
= PDi . Using (18), we express the last term as

QD1

(
P

Vi
Di

)
′

P
Vi
Di
QD1

= QD1

i∏

j=1

H′TjHDj(D
′

jH
′TjHDj)

−D′

j ×

×
1∏

j=i

Dj(D
′

jH
′TjHDj)

−D′

jH
′TjHQD1

.

Since HQD1
is independent of HDj, j = 1, . . . , k, and T1 = QX , using Lemma 5

and Theorem 2.2.9 (i) of Kollo and Rosen [3], we may write

QD1
E

[(
P

Vi
Di

)
′

P
Vi
Di

]
QD1

= E

[
Tr


D1(D

′

1H
′T1HD1)

−D′

1H
′T1T1H×

×D1(D
′

1H
′T1HD1)

−D′

1

i∏

j=2

H′TjHDj(D
′

jH
′TjHDj)

−D′

j×

×
2∏

j=i

Dj(D
′

jH
′TjHDj)

−D′

jH
′TjH




QD1

=

= E

[
Tr


D1(D

′

1W1D1)
−D′

1W1D1(D
′

1W1D1)
−D′

1×

×
i∏

j=2

(
P

Wj

Dj

)
′

2∏

j=i

P
Wj

Dj




QD1

=

= E


Tr




2∏

j=i

P
Wj

Dj
D1(D

′

1W1D1)
−D′

1

i∏

j=2

(
P

Wj

Dj

)
′




QD1

=

= d1 . . . di−1ciQD1
. (23)

It can be obtained in a similar way for j = 2, . . . , i

(
PDj−1

−PDj

)
E

[(
P

Vi
Di

)
′

P
Vi
Di

] (
PDj−1

−PDj

)
=

= E

[
Tr
(
P

Wi
Di

· · ·P
Wj+1

Dj+1
Dj

(
D′

jWjDj

)
−

D′

j

(
P

Wj+1

Dj+1

)
′

· · ·
(
P

Wi
Di

)
′
)]

×

×
(
PDj−1

−PDj

)
= djdj+1 . . . di−1ci

(
PDj−1

−PDj

)
. (24)
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Combining (22), (23) and (24), we have

E

[(
P

Vi
Di

)
′

P
Vi
Di

]
=

= PDi +
i∑

j=2

djdj+1 . . . di−1ci
(
PDj−1

−PDj

)
+ d1 . . . di−1ciQD1

=

= PDi +
i∑

j=2

djdj+1 . . . di−1ci

(
QDj

−QDj−1

)
+ d1 . . . di−1ciQD1

=

= PDi + ciQDi
+

i−1∑

j=1

(dj − 1) dj+1 . . . di−1ciQDj
. (25)

Finally, due to (22) and (25) and since QDi
= PΣ−1/2Zi

and r (Di) = p− r (Zi) for
any i = 1, . . . , k

Fi = Σ1/2


QDi

+ ciQDi
+

i−1∑

j=1

(dj − 1) dj+1 . . . di−1ciQDj


Σ1/2 =

= Σ1/2


(1 + ci)PΣ−1/2Zi

+

i−1∑

j=1

(dj − 1) dj+1 . . . di−1ciPΣ−1/2Zj


Σ1/2 =

= (1 + ci)Zi

(
Z′

iΣ
−1Zi

)
−1

Z′

i+

+
i−1∑

j=1

(dj − 1) dj+1 . . . di−1ciZj

(
Z′

jΣ
−1Zj

)
−1

Z′

j , (26)

where in dj and ci are r (Dl) replaced by p − r (Zl). Finally, from (16) and (26)

the variance of B̂i, i = 2, . . . , k, is obtained.

Observe that ci > 0 and di > 1 ∀i.

The following theorem presents E
[
Σ̂
]
in Model III. Expectation of correspond-

ing estimators for Model I and Model II can be found in Kollo and Rosen [3],
Theorem 4.2.9, p. 435, and Filipiak and Rosen [1], respectively.

Theorem 7. Let estimator Σ̂ be given in Theorem 1. Then

E
[
Σ̂
]
=

(
1+

k∑

i=1

r (Xi)

n

[
(ci−1)PΣ−1

Zi
+

i−1∑

j=1

(dj−1)dj+1 . . . di−1ciP
Σ−1

Zj

])
Σ, (27)

where ci and dj for all i and j < i are given in Theorem 6.
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Proof. Observe that we can write

nΣ̂ = S1 +

k∑

i=1

Q
S−1

i
Zi

Y′PXiY

(
Q

S−1

i
Zi

)
′

=

= S1 +

k∑

i=1

(
P

Si
QZi

)
′

E
′PXiEP

Si
QZi

,

where S1 = E
′QXE. SincePXiE and Si are independent, utilizing the first moment

of a Wishart matrix we obtain

E
[
nΣ̂
]

= E [S1] +

k∑

i=1

E

[(
P

Si
QZi

)
′

E
[
E
′PXiE

]
P

Si
QZi

]
=

=

(
n−

k∑

i=1

r (Xi)

)
Σ+

k∑

i=1

r (Xi) E

[(
P

Si
QZi

)
′

ΣP
Si
QZi

]
=

=

(
n−

k∑

i=1

r (Xi)

)
Σ+

k∑

i=1

r (Xi)Σ
1/2E

[(
P

Vi
Di

)
′

ΣP
Vi
Di

]
Σ1/2.

The result now follows from relation (25).

4 Conclusions

To conclude, the authors would like to stress that orthogonal decompositions are
very useful in all areas of statistics and mathematics. If modelling of a real world
phenomenon allows creating an orthogonal structure, the resulting model can be
expected to have much nicer properties than all others. In our case it is ECGM
Model III, where we assume orthogonal structure in the ANOVA part (which is al-
ways the case in simple one-way model). Under such assumptions, we have derived
explicit form of MLEs of both the first- and the second-order parameters, and also
their basic moments, in general k profile setting. This is very useful especially for
the comparison of small sample properties of MLEs with other competitive esti-
mators. As a drawback of MLE estimation in this setting can be viewed possible
big bias of Σ̂.
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MŠ SR 1/0344/14.
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