Prejsť na obsah

Vybrané publikácie

22minút, 29sekúnd

Molekulárne magnetiká a mixované spinové systémy

  1. M. Žukovič and M. Semjan, Magnetization process and magnetocaloric effect in geometrically frustrated Ising antiferromagnet and spin ice models on a ‘Star of David’ nanocluster, J. Magn. Magn. Mater. 451 (2018) 311.
  2. J. Strečka, K. Karľová, Magnetization curves and low-temperature thermodynamics of two spin-1/2 Heisenberg edge-shared tetrahedra, AIP Adv. 8 (2018) 101403.
  3. V. Štubňa and M. Jaščur,  Localized magnetic models with higher-order interactions, Acta Physica Slovaca, 69 (2018) 75.
  4. V. Štubňa and M. Jaščur, Mixed spin-1/2 and 3/2 Ising model with multi-spin interactions on a decorated square lattice,  J. Magn. Magn. Mater. 442 (2017) 364.
  5. K. Karľová, J. Strečka, J. Richter, Enhanced magnetocaloric effect in the proximity of magnetization steps and jumps of spin-1/2 XXZ Heisenberg regular polyhedra, J. Phys.: Condens. Matter 29 (2017) 125802.

Frustrované spinové systémy

  1. M. Mohylna, M. Žukovič, Magnetocaloric properties of frustrated tetrahedra-based spin nanoclusters, Phys. Lett. A 383 (2019) 2525-2534.
  2. A. Bobák, E. Jurčišinová, M. Jurčišin, M. Žukovič, T. Balcerzak, An investigation of the J1-J2-J3 transverse Ising antiferromagnet on the honeycomb lattice with frustration, Physica A 518 (2019) 13-21.
  3. M. Žukovič, M. Borovský, A. Bobák, Thermodynamic and critical properties of an antiferromagnetically stacked triangular Ising antiferromagnet in a field, Phys. Lett. A 382 (2018) 1305-1311.
  4. A. Bobák, E. Jurčišinová, M. Jurčišin, M. Žukovič, Frustrated spin-1/2 Ising antiferromagnet on a square lattice in a transverse field, Phys. Rev. E 97 (2018) 022124-1-7.
  5. K. Karľová, J. Strečka, M.L. Lyra, Unconventional quantum antiferromagnetism with a fourfold symmetry breaking in a spin-1/2 Ising-Heisenberg pentagonal chain, Phys. Rev. B 97 (2018) 104407.

Lokalizované magnetické systémy so spinovou-mriežkovou väzbou

  1. T. Balcerzak,  K. Szalowski and M. Jaščur, Thermodynamic model of a solid with RKKY interaction and magnetoelastic coupling, J. Magn. Magn. Mater. 452 (2018) 360.
  2. K. Szalowski,  T. Balcerzak  and M. Jaščur, Thermodynamics of a model solid with magnetoelastic coupling, J. Magn. Magn. Mater. 445 (2018) 110.
  3. T. Balcerzak,  K. Szalowski and M. Jaščur, Self-consistent model of a solid for the description of lattice and magnetic properties, J. Magn. Magn. Mater. 426 (2017) 310.
  4. J. Strečka, M. Rebič, O. Rojas, S. M. de Souza, Anomalous spin frustration enforced by a magnetoelastic coupling in the mixed-spin Ising model on decorated planar lattices, J. Magn. Magn. Mater. 469 (2019) 655.
  5. J. Strečka, O. Rojas, S.M. de Souza, Absence of a spontaneous long-range order in a mixed spin-(1/2, 3/2) Ising model on a decorated square lattice due to anomalous spin frustration driven by a magnetoelastic coupling, Phys. Lett. A 383 (2019) 2451.

Zovšeobecnené spojité spinové systémy

  1. M. Žukovič, M. Borovský, M. Lach, D.T. Hristopulos, GPU-Accelerated Simulation of Massive Spatial Data Based on the Modified Planar Rotator Model, Mathematical Geosciences (2020) 123-143.
  2. M. Žukovič, XY model with antinematic interaction, Phys. Rev. E 99 (2019) 62112-1-10.
  3. M. Žukovič, D.T. Hristopulos, Gibbs Markov random fields with continuous values based on the modified planar rotator model, Phys. Rev. E 98 (2018) 062135-1-22.
  4. M. Žukovič and G. Kalagov, Magnetic quasi-long-range ordering in nematic systems due to competition between higher-order couplings, Phys. Rev. E 97 (2018) 052101.
  5. M. Žukovič and G. Kalagov, XY model with higher-order exchange, Phys. Rev. E 96 (2017) 022158.

Korelované spinové a elektrónové systémy

  1. H. Čenčariková, J. Strečka, A. Gendiar, Influence of applied electric and magnetic fields on a thermally-induced reentrance of a coupled spin-electron model on a decorated square lattice, Physica E 115 (2020) 113717.
  2. H. Čenčariková, J. Strečka, Conventional and rotating magnetoelectric effect of a half-filled spin-electron model on a doubly decorated square lattice, Phys. Lett. A 383 (2019) 125957.
  3. H. Čenčariková, J. Strečka, Enhanced magnetoelectric effect of the exactly solved spin-electron model on a doubly decorated square lattice in the vicinity of a continuous phase transition, Phys. Rev. E 98 (2018) 062129.
  4. H.S. Sousa, M.S.S. Pereira, I.N. de Oliveira, J. Strečka, M.L. Lyra, Phase diagram and re-entrant fermionic entanglement in a hybrid Ising-Hubbard ladder, Phys. Rev. E 97 (2018) 052115.
  5. R.C.P. Carvalho, M.S.S. Pereira, I.N. de Oliveira, J. Strečka, M.L. Lyra, Ground-state phase diagram, fermionic entanglement and kinetically-induced frustration in a hybrid ladder with localized spins and mobile electrons, J. Phys.: Condens. Matter 29 (2017) 365801.

Kvantové fázové prechody a kvantové previazanie

  1. J. Strečka, L. Gálisová, T. Verkholyak, Enhanced magnetoelectric effect near a field-driven zero-temperature quantum phase transition of the spin-1/2 Heisenberg-Ising ladder, Phys. Rev. E 101 (2020) 012103.
  2. K. Karľová, J. Strečka, T. Verkholyak, Cluster-based Haldane phases, bound magnon crystals and quantum spin liquids of a mixed spin-1 and spin-1/2 Heisenberg octahedral chain, Phys. Rev. B 100 (2019) 094405.
  3. K. Karľová, J. Strečka, M.L. Lyra, Breakdown of intermediate one-half magnetization plateau of spin-1/2 Ising-Heisenberg and Heisenberg branched chains at triple and Kosterlitz-Thouless critical points, Phys. Rev. E 100 (2019) 042127.
  4. J. Strečka, K. Karľová, V. Baliha, O. Derzhko, Ising versus Potts criticality in low-temperature magnetothermodynamics of a frustrated spin-1/2 Heisenberg triangular bilayer, Phys. Rev. B 98 (2018) 174426    .
  5. J. Strečka, J. Richter, O. Derzhko, T. Verkholyak, K. Karľová, Diversity of quantum ground states and quantum phase transitions of a spin-1/2 Heisenberg octahedral chain, Phys. Rev. B 95 (2017) 224415.

Exaktne riešiteľné modely v štatistickej mechanike

  1. J. Torrico, J. Strečka, O. Rojas, S.M. de Souza, M.L. Lyra, Magnetic behavior of a ferroferrimagnetic ternary alloy ABρC1−ρ with a selective site disorder: Case study of a mixed-spin Ising model on a honeycomb lattice, Phys. Rev. E 101 (2020) 032104.
  2. O. Rojas, J. Strečka, O. Derzhko, S.M. de Souza, Peculiarities in pseudo-transitions of a mixed spin-(1/2, 1) Ising–Heisenberg double-tetrahedral chain in an external magnetic field, J. Phys.: Condens. Matter 32 (2020) 035804.
  3. O. Rojas, J. Strečka, M.L. Lyra, S.M. de Souza, Universality and quasicritical exponents of one-dimensional models displaying a quasitransition at finite temperatures, Phys. Rev. E 99 (2019) 042117.
  4. L. Gálisová, J. Strečka, Magnetic and magnetocaloric properties of the exactly solvable mixed-spin Ising model on a decorated triangular lattice in a magnetic field, Physica E 99 (2018) 244-253.
  5. J. Strečka, Strong- and Weak-Universal Critical Behaviour of a Mixed-Spin Ising Model with Triplet Interactions on the Union Jack (Centered Square) Lattice, Entropy 20 (2018) 91.

Eruptívne a pulzujúce premenné hviezdy

  1. J. Merc, R. Gális, M. Wolf, New online database of symbiotic variables: Symbiotics in X-rays, Astronomische Nachrichten 340 (2019), 598-606.
  2. R. Gális, J. Merc, L. Leedjärv, The current active stage of the symbiotic system AG Draconis, Contributions of the Astronomical Observatory Skalnaté Pleso 49 (2019), 197-203.
  3. M. Skarka,  P. Kabáth, E. Paunzen, M. Fedurco, …, Š. Parimucha et al.: HD 99458: First time ever Ap-type star as a δ Scuti pulsator in a short period eclipsing binary? Monthly Notices of Royal Astronomical Society 487 (2019) 4230.
  4. J. Merc, R. Gális, CorrLAB: Correlation and Period Analysis Software, The Astronomical Journal 156 (2018), 111.
  5. J. Merc, R. Gális, M. Vrašťák, L. Leedjärv, The Fourth Outburst during the Ongoing Active Stage of AG Draconis has Finished, Research Notes of the AAS 2 (2018) 142.

Dvojhviezdy a exoplanetárne systémy

  1. P. Gajdoš, M. Vaňko, M. Jakubík, …, Š. Parimucha, WASP-92, WASP-93, and WASP-118: transit timing variations and long-term stability of the systems, Monthly Notices of Royal Astronomical Society 485 (2019) 3580.
  2. P. Gajdoš, M. Vaňko, Š. Parimucha, Transit timing variations and linear ephemerides of confirmed Kepler transiting exoplanets, Research in Astronomy and Astrophysics 19 (2019) 31.
  3. P. Gajdoš, M. Vaňko, T. Pribulla, D. Dupkala, J. Šubjak, M. Skarka, P. Kabáth, L. Hambálek, Š. Parimucha, Transit timing variations, radial velocities, and long-term dynamical stability of the system Kepler-410, Monthly Notices of Royal Astronomical Society  484 (2019) 4352.

Supravodivé nanoštruktúry

  1. M. Žemlička, M. Kopčík, P. Szabó, T. Samuely, J. Kačmarčík, P. Neilinger, M. Grajcar, P. Samuely, Zeeman-driven superconductor-insulator transition in strongly disordered MoC films: Scanning tunneling microscopy and transport studies in a transverse magnetic field, Phys. Rev. B 102 (2020) 180508. 
  2. G. Zhang, T. Samuely, N. Iwahara, J. Kačmarčík, C. Wang, P.W. May, J.K. Jochum, O. Onufriienko, P. Szabó, S. Zhou, P. Samuely, V.V. Moshchalkov, L.F. Chibotaru, H.-G. Rubahn, Yu-Shiba-Rusinov bands in ferromagnetic superconducting diamond, Sci. Adv. 6 (2020), eaaz2536.
  3. G. Zhang, T. Samuely, Z. Xu, J. K. Jochum, A. Volodin, S. Zhou, P. W. May, O. Onufriienko, J. Kačmarčík, J. A. Steele, J. Li, J. Vanacken, J. Vacík, P. Szabó, H. Yuan, M. B. J. Roeffaers, D. Cerbu, P. Samuely, J. Hofkens, and V. V. Moshchalkov, Superconducting Ferromagnetic Nanodiamond, ACS Nano 11 (2017) 5358.
  4. G. Zhang, T. Samuely, H. Du, Z. Xu, L. Liu, O. Onufriienko, P. W. May, J. Vanacken, P. Szabó, J. Kačmarčík, H. Yuan, P. Samuely, R. E. Dunin-Borkowski, J. Hofkens, and V. V. Moshchalkov, Bosonic Confinement and Coherence in Disordered Nanodiamond Arrays, ACS Nano 11 (2017) 11746.
  5. V. Tkáč, K. Výborný, V. Komanický, J. Warmuth, M. Michiardi, A.S. Ngankeu, M. Vondráček, R. Tarasenko, M. Vališka, V. Stetsovych, K. Carva, T. Garate, M. Bianchi, J. Wiebe, V. Holý, P. Hofmann, S. Springholz, V. Sechovský, J. Honolka, Influence of an Anomalous Temperature Dependence of the Phase Coherence Length on the Conductivity of Magnetic Topological Insulators, Phys. Rev. Lett. 123 (2019) 036406.

Nekonvenčné stavy v kvantových magnetických systémoch

  1. V.N. Glazkov, Y.V. Krasnikova, I.K. Rodygina, J. Chovan, R. Tarasenko, A. Orendáčová, Splitting of antiferromagnetic resonance modes in the quasi-two-dimensional collinear antiferromagnet Cu(en)(H2O)2SO4,  Phys. Rev. B 101 (2020) 014414.
  2. L. Lederová, A. Orendáčová, R. Tarasenko, K. Karľová, J. Strečka, A. Gendiar, M. Orendáč, A. Feher, Interplay of magnetic field and interlayer coupling in the quasi-two-dimensional quantum magnet Cu(en)Cl2: Realization of the spin-1/2 rectangular/zigzag square Heisenberg lattice, Phys. Rev. B 100 (2019) 134416.
  3. V.V. Eremenko, V.A. Sirenko, A. Baran, E. Čižmár, A. Feher, Spin-glass polyamorphism induced by a magnetic field in LaMnO3 single crystal, J. Phys. Cond. Matter 30 (2018) 205801.
  4. P. Opletal, J. Prokleška, J. Valenta, P. Proschek, V. Tkáč, R. Tarasenko, M. Běhounková, Š. Matoušková, M. M. Abd-Elmeguid and V. Sechovský, Quantum ferromagnet in the proximity of the tricritical point, npj Quantum Materials 2 (2017) 29.
  5. L. Lederová, A. Orendáčová, J. Chovan, J. Strečka, T. Verkholyak, R. Tarasenko, D. Legut, R. Sýkora, E. Čižmár, V. Tkáč, M. Orendáč, and A. Feher, Realization of a spin-1/2 spatially anisotropic square lattice in a quasi-two-dimensional quantum antiferromagnet Cu(en)(H2O)2SO4, Phys. Rev. B 95 (2017) 054436.

Magnetokalorický jav a tepelný transport v kvantových systémoch

  1. S. Vorobiov, D. Tomasova, V. Girman, H. You, E. Čižmár, M. Orendáč, V., Komanicky, Optimization of the magnetocaloric effect in arrays of Ni3Pt nanomagnets, J. Magn. Magn. Mater. 474 (2019) 63-69.
  2. V. Tkáč, R. Tarasenko, E. Tóthová, Z. Bujňáková, K. Tibenská, A. Orendáčová, V. Sechovský, M. Orendáč, Relaxation phenomena and magnetocaloric effect in the dynamic spin ice Pr2Sn2O7, J. Alloys Comp., 808 (2019) 151719.
  3. V. Tkáč, A. Orendáčová, R. Tarasenko, M. Orendáč, A. Feher, Impact of the crystal electric field on magnetocaloric properties of CsGd(MoO4)2, Journal of Alloys and Compounds 729 (2017) 323.
  4. M. Orendáč, R. Tarasenko, V. Tkáč, A. Orendáčová, V. Sechovský, Specific heat study of the magnetocaloric effect in the Haldane-gap S=1 spin-chain material [Ni(C2H8N2)2NO2](BF4), Phys. Rev. B 96 (2017) 094425.
  5. V. Mitsa, A. Feher, S. Petretskyi, R. Holomb, V. Tkáč, A, P. Ihnatolia, A. Laver, Hysteresis of Low-Temperature Thermal Conductivity and Boson Peak in Glassy (g) As2S3: Nanocluster Contribution, Nanoscale Research Letters 12 (2017) 345.

Molekulové magnety a spinová dynamika

  1. V. Tkáč, R. Tarasenko, E. Čižmár, A. Orendáčová, K. Tibenská, J. Holubová, E. Černošková, Z. Černošek, M. Orendáč, Spin relaxation in 3Zn(PO3)2·2Mn(PO3)2 phosphate glass – The role of low-energy vibrational modes, J. Alloys Comp. 851 (2021) 156910.
  2. T.N. Starodub, E. Čižmár, A. Kliuikov, V.A. Starodub, A., Feher, M. Kozlowska, Stabilization of Pancake Bonding in (TCNQ)2.− Dimers in the Radical-Anionic Salt (N−CH3−2-NH2−5Cl−Py)(TCNQ)(CH3CN) Solvate and Antiferromagnetism Induction, ChemistryOpen 8 (2019) 984-988.
  3. P. Konieczny, A.B. Gonzalez-Guillén, K. Luberda-Durnaś, E. Čižmár, R. Pełka, M. Oszajca, W. Łasocha, 1D coordination polymer (OPD)2CoIISO4 showing SMM behaviour and multiple relaxation modes, Dalton Trans. 48 (2019) 7560-7570.
  4. A. Reznickova, M. Orendac, E. Cizmar, O. Kvitek, P. Slepicka, Z. Kolska, V. Svorcik, Magnetic and Surface Properties of Metallophthalocyanines (M = Cu, Fe) Grafted Polyethylene, J. Phys. Chem. C 122 (2018) 1396-1403. 
  5. K.J. Anderton, D.M. Ermert, P. A. Quintero, M.W. Turvey, M.S. Fataftah, K.A. Abboud, M.W. Meisel, E. Čižmár, L. J. Murray, Inorg. Chem. 56 (2017) 12012.

Nanotechnológie a nanofyzika

  1. O. Dobrozhan, S. Vorobiov, D. Kurbatov, V. Komanicky, V.Opanasyuk,  Structural properties and chemical composition of ZnO films deposited onto flexible substrates by spraying polyol mediated nanoinks, Superlattices and Microstructures 140 (2020) 106455.
  2. H. Hashim, M. Kozhaev, P. Kapralov, S. Vorobiov, V. Komanický, Controlling the transverse magneto-optical kerr effect in Cr/Nife bilayer thin films by changing the thicknesses of the Cr layer, Nanomaterials 10 (2020) 256.
  3. Y. Liu, T. Kawaguchi, M. S. Pierce, V. Komanicky, H. You, J. Phys. Chem. Lett. 9 (2018) 1265.

Štruktúra a fyzikálne vlastnosti neusporiadaných i kváziusporiadaných kovových zliatin

  1. J. Bednarčík, M. Cesnek, P. Sovák, Soft magnetic amorphous alloys in X-ray light: Insights from ultra-fast Joule heating experiments, Journal of Magnetism and Magnetic Materials 499 (2020) 166282.
  2. M. Ghafari, X. Mu, J. Bednarčík, W. D. Hutchinson, H. Gleiter, S. J. Campbell, Magnetic properties of iron clusters in Sc75Fe25 nanoglass, Journal of Magnetism and Magnetic Materials 494 (2020).
  3. K. Saksl, Z. Molčanová, J. Ďurišin, P. Jóvári, Š. Michalik, L. Temleitner, B. Ballóková, V. Girman, Y. Katuna, M. Šulíková, K. Šuľová, M. Fejerčák, M. Lisnichuk, A. Lachová, L. Kapuscinský, Atomic structure of Ca-Mg biodegradable metallic glass, Journal of Alloys and Compounds 801 (2019).
  4. M. Pleva, B. Grančič, M. Mikula, M. Truchlý, T. Roch, L. Satrapinskyy, M. Gregor, P. Ďurina, V. Girman, P. Švec Jr., A. Plecenik, P. Kúš, Thermal stability of amorphous Ti-B-Si-N coatings with variable Si/B concentration ratio, Surface and Coating Technology 333 (2018).
  5. E. Babić, D. Pajić, K. Zadro, K. Biljaković, V. M. Trontl, P. Pervan, D. Starešinić, I. A. Figueroa, A. Kuršumović, S. Michalik, A. Lachová, G. Remenyi, R. Ristić, Structure property relationship in (TiZrNbCu)1-xNix metallic glasses, Journal of Materials Research 33 (2018).

Štúdium fázových transformácií s využitím in-situ RTG difrakcie

  1. J. Bednarčík, M. Cesnek, and P. Sovák, “Soft magnetic amorphous alloys in X-ray light: Insights from ultra-fast Joule heating experiments”, Journal of Magnetism and Magnetic Materials 499 (2020) 166282.
  2. H. Fang, J. Li, S. Shafeie, D. Hedlund, J. Cedervall, F. Ekstrom, C. P. Gomez, J. Bednarcik, P. Svedlindh, K. Gunnarsson, M. Sahlberg, “Insights into phase transitions and magnetism of MnBi crystals synthesized from self-flux”, Journal of Alloys and Compounds 781 (2019) 308–314.
  3. M. Matsushita, T. Nagata, J. Bednarcik, N. Nishiyama, S. Kawano, S. Iikubo, Y. Kubota, R. Morishita, T. Irifune, M. Yamasaki, Y. Kawamura, M. Enoki, H. Ohtani, “Key Factor for the Transformation from hcp to 18R-Type Long-Period Stacking Ordered Structure in Mg Alloys”, Materials Transactions 60 (2019) 237–245.
  4. Valentoni, P. Barra, N. Senes, G. Mulas, C. Pistidda, J. Bednarcik, F. Torre, S. Garroni, S. Enzo, “A mechanochemical route for the synthesis of VNbO5 and its structural re-investigation using structure solution from powder diffraction data”, Dalton Transactions 48 (2019) 10986–10995.
  5. H. Stoeffler, T. Zinkevich, M. Yavuz, A.-L. Hansen, M. Knapp, J. Bednarcik, S. Randau, F. H. Richter, J. Janek, H. Ehrenberg, S. Indris, “Amorphous versus Crystalline Li3PS4: Local Structural Changes during Synthesis and Li Ion Mobility”, Journal of Physical Chemistry C 123 (2019) 10280–10290.

Magnetické nanočastice pre biomedicínske aplikácie

  1. A. Zeleňáková, P. Hrubovčák, O. Kapusta, N. Kučerka, A. Kuklin, O. Ivanov, V. Zeleňák, Size and distribution of the iron oxide nanoparticles in SBA-15 nanoporous silica via SANS study, Scientific Reports 9 (2019) 15852.
  2. V. Zeleňák, A. Zeleňáková, O. Kapusta, P. Hrubovčák, V. Girman, J. Bednarčík, Fe2O3 and Gd2O3 nanoparticles loaded in mesoporous silica: insights into influence of nps concentration and silica dimensionality, RSC Advances 9 (2019) 3679.
  3. O. Kvitek, A. Rezničková, A. Zeleňáková, M. Orendáč, V. Svorčík,  Immobilization of Fe@Au superparamagnetic nanoparticles on polyethylene, European Polymer Journal 110 (2019) 56-62.
  4. V. Zeleňák, D. Halamová, M. Almáši, A. Zeleňáková, O. Kapusta, Ordered cubic nanoporous silica support MCM-48 for delivery of poorly soluble drug indomethacin, Applied Surface Science 443 (2018) 525-534.

Nanočastice a nanoskopické systémy pre magnetokalorické chladenie

  1. A. Zeleňáková, P. Hrubovčák, V. Zeleňák, J. Kováč, V. Franco, Magnetocaloric effect and scaling analysis in superspinglass cobalt based nanoparticles, Journal of Alloys and Compounds 805 (2019) 767-773.
  2. V. Zeleňák, M. Almáši, A. Zeleňáková, S. Bourelly, P. Llewellyn, Large and tunable magnetocaloric effect in gadolinium-organic framework: tuning by solvent Exchange, Scientific Reports 9 (2019) 15572.
  3. O. Kapusta, A. Zeleňáková, P. Hrubovčák, R. Tarasenko, V.  Zeleňák, The study of entropy change and magnetocaloric response in magnetic nanoparticles via heat capacity measurements, International Journal of Refrigeration 86 (2018) 107-112.
  4. A. Zeleňáková, P. Hrubovčák, O. Kapusta, V. Zeleňák, V. Franco, Controlling of magnetocaloric effect in Gd2O3@SiO2 nanocomposites by substrate dimensionality and particles‘ concentration, AIP ADVANCES 8 (2018) 048105.

Magnetizačné procesy v magneticky mäkkých feromagnetikách

  1. E. A. Périgo, B. Weidenfeller, P. Kollár, J. Füzer, Past, present, and future of soft magnetic composites, Applied Physics Reviews 5 (2018) 031301.
  2. Z. Birčáková, J. Füzer, P. Kollár, J. Szabó, M. Jakubčin, M. Strečková, R. Bureš, M. Fáberová, Preparation and characterization of iron-based soft magnetic composites with resin bonded nano-ferrite insulation, J. Alloy. Comp. 828 (2020) 154416.
  3. S. Dobák, J. Füzer, P. Kollár, Temperature evolution of broadband magnetization behavior in dual-phase soft magnetic compacted materials, Materials & Design 114 (2017) 383.
  4. P. Kollár, P. Slovenský, D. Olekšáková, M. Jakubčin, Z. Birčáková, J. Füzer, M. Fáberová, R. Bureš, Preparation and magnetic properties of NiFeMo powdered compacts of powder elements with smoothed surfaces, J. Magn. Magn. Mater. 494 (2020) 165770.
  5. J. Füzer, M. Strečková, S. Dobák, Ľ. Ďáková, P. Kollár, M. Fáberová, R. Bureš, et al., Innovative ferrite nanofibres reinforced soft magnetic composite with enhanced electrical resistivity, J. Alloy. Comp. 735 (2018) 219.

Interakcie ťažkých iónov a nukleónov pri ultrarelativistických energiách

  1. S. Acharya, M. Bombara, A. Kravčáková, M. Šefčík, L. Tropp, J. Vrláková, ALICE Collaboration, Dielectron and heavy-quark production in inelastic and high-multiplicity proton-proton collisions at sqrt(s)=13 TeV, Phys. Lett. B 788 (2019) 505.
  2. J. Adam, S. Vokál (STAR Collaboration), Beam energy dependence of (anti)deuteron production in Au + Au collisions at the BNL Relativistic Heavy Ion Collider, Phys. Rev. C 99 (2019) 064905.
  3. S. Acharya, M. Bombara, A. Kravčáková, M. Šefčík, L. Tropp, J. Vrláková, ALICE Collaboration, phi meson production at forward rapidity in Pb-Pb collisions at sqrt(s_NN) = 2.76 TeV, Eur. Phys. J. C 78 (2018) 559.
  4. S. Acharya, M. Bombara, A. Kravčáková, M. Šefčík, L. Tropp, J. Vrláková, ALICE Collaboration, Linear and non-linear flow modes in Pb-Pb collisions at sqrt(s_NN) = 2.76 TeV, Phys. Lett. B 773 (2017) 68.
  5. J. Adam, M. Bombara, A. Kravčáková, M. Šefčík, J. Vrláková, ALICE Collaboration, Enhanced production of multi-strange hadrons in high-multiplicity proton–proton collisions, Nature Physics 13 (2017) 535.

Interakcie ľahkých jadier pri stredných energiách

  1. S.N.Basilev,…, G. Martinská, J. Urbán, J. Mušinský et al. , Measurement of neutron and proton analyzing powers on C, CH, CH2 and Cu targets in the momentum region 3-4.2 GeV/c,  Eur. Phys. J. A 56 (2020) 26.
  2. S.V. Afanasev, …, K. Michaličková et al., Test of the Neutron Detector in the Nuclotron Extraction Beamline, Physics of Particles and Nuclei Letters 16 (2019) 327.
  3. K. Michaličková, S. V. Afanasiev, D. K. Dryablov, S. Vokál, η-nuclei in the SCAN experiment, EPJ Web Conf. 204 (2019) 09001.
  4. M. Janek, …., G. Martinská et al., Calibration procedure of the ΔE–E detectors for dp breakup investigation at nuclotron, Phys. Part. Nucl. Lett. 15 (2018) 76.
  5. M. Janek,…, G.Martinská  et  al.,Investigation of the dp Breakup and dp Elastic Reactions at Intermediate Energies at Nuclotron, Few Body Systems 58 (2017) 40.

Molekulové a bunkové mechanizmy fotodynamickej terapie, cielený transport liečiv

  1. K. Štroffeková, S. Tomková, V. Huntošová and T. Kožár, Importance of hypericin-Bcl2 interactions for biological effects at subcellular levels. Photodiagnosis Photodyn. Ther. 28 (2019) 38-52.
  2. A. Jutková, D. Chorvát, P. Miškovský, D. Jancura and S. Datta. Encapsulation of anticancer drug curcumin and co-loading with photosensitizer hypericin into lipoproteins investigated by fluorescence resonance energy transfer. Int. J. Pharmaceutics 564 (2019) 369-378.
  3. S. Datta, A. Jutkova, P. Sramková, L. Lenkavská, V. Huntošová, D. Chorvát, P. Miškovský, D. Jancura and J. Kronek, Unravelling the excellent chemical stability and bioavailability of solvent responsive curcumin-loases 2-ethyl-2oxazoline-grad-2-(4-dodecyloxyphenyl)-2-oxazoline copolymer nanoparticles for drug delivery. Biomacromolecules 19 (2018) 2459-2471.
  4. A. Hovan, S. Datta, S.G. Kruglik, D. Jancura, P. Miškovský and G. Báno. Phosphorescence kinetics of singlet oxygen produced by photosensitization in spherical nanoparticles. Part I. Theory. J. Phys. Chem. B 122 (2018) 5147-5153.
  5. V. Huntošová, M. Novotová, Z. Nichtová, L. Balogová, M. Maslaňaková, D. Petrovajová, and K. Štroffeková, Assessing light-independent effects of hypericin on cell viability, ultrastructure and metabolism in human glioma and endothelial cells. Toxicology in Vitro 40 (2017) 184-195.

Aplikácie opticko-spektroskopických techník v biomedicíne a životnom prostredí

  1. Z. Jurašeková, A. Garcia-Leis, S. Sanchez-Cortes, A. Tinti and A. Torreggiani. Structural analysis of the neuropeptide substance P by using vibrational spectroscopy. Anal. Bioanal. Chem. 411 (2019) 7419-7430.
  2. A. Torreggiani, A. Tinti, Z. Jurašeková, M. Capdevila, M. Saracino and M. Di Foggia. Structural lesions of proteins connected to lipid membrane damages caused by radical stress: Assessment by biomimetic systems and Raman spectroscopy. Biomolecules 9 (2019) 794.                                                                                                             
  3. S. Datta, A. Hovan, A. Jutková, S.G. Kruglik, D. Jancura, P. Miškovský and G. Báno. Phosphorescence kinetics of singlet oxygen produced by photosensitization in spherical nanoparticles. Part II. The case of hypericin-loaded low-density lipoprotein particles. J. Phys. Chem. B 122 (2018) 5154-5160.
  4. J. Joniová, V. Kažiková, E. Gerelli, G. Báno, G. Wagnieres. Measurements of the optical coefficients of the protoporphyrin IX endogenously producing yeast-based model in the visible and NIR. Journal of Biomedical Optics 23 (2018) 075001
  5. J. Joniová, M. Rebič, A. Strejčková, V. Huntošová, J. Staničová, D. Jancura, P. Miškovský and G. Báno. Formation of large hypericin aggregates in giant unilamellar vesicles – experiments and modeling. Biophys. Journal 112 (2017) 966-975.

Molekulové modelovanie a multimodálne zobrazovanie biologických štruktúr:

  1. S. Perepelytsya, J. Uličný, A. Laaksonen and F. Mocci, Pattern preferences of DNA nucleotide motifs by polyamines putrescine2+, spermidine3+ and spermine. Nucleic Acids Res. 47 (2019) 6084-6097.
  2. P. Vagovič, …, J. Uličný, …, A. Mancuso, Megahertz x-ray microscopy at x-ray free-electron laser and synchrotron sources, Optica 6 (2019) 1106.
  3. S. Hrivňák, A. Hovan A., J. Uličný and P. Vagovič, Phase retrieval for arbitrary Fresnel-like linear shift-invariant imaging systems suitable for tomography. Biomedical Optics Express 9 (2018) 4390-4400.
  4. S. Hrivňák, J. Uličný and P. Vagovič, Fast Fresnel propagation through a set of inclined reflecting planes applicable for X-ray imaging, Optics Express 26 (2018) 34569-34579.
  5. M. Rebič, F. Mocci, J. Uličný, A.P. Lyubartsec and A. Laaksonen, Coarse-grained simulation of rodlike higher-order quadruplex structures at different salt concentrations, Acs Omega 2 (2017) 386-396.

Matematická biológia, biologické a mezoskopické modelovanie

  1. B. Brutovský and D. Horváth, In silico implementation of evolutionary paradigm in therapy design: Towards anti-cancer therapy as Darwinian process. J. Theor. Biol. 485 (2020) 110038.                                                                                                           
  2. D. Horváth and B. Brutovský, A new conceptual framework for the therapy by optimized multidimensional pulses of therapeutic activity. The case of multiple myeloma model, Journal of Theoretical Biology 454 (2018), 292-309.           
  3. D. Horváth and B. Brutovský, Toward understanding of the role of reversibility of phenotype switching in the evolution of resistance to therapy. Physics Letters A 382 (2018) 1586-1600.
  4. D. Horváth, J. Gazda and B. Brutovský, A new bio-inspired, population-level approach to the socioeconomic evolution of dynamic spectrum access services. International Journal of Modern Physics C 28 (2017) 1750062.

Stabilita proteínov a proteínové inžiniestvo

  1. M. Peterenčaková, F. Filandr, A. Hovan, G. Yassaghi, P. Man, T. Kožár, M.S. Schwer, D. Jancura, A. Pluckthun, P. Novak, P. Miskovsky, G. Báno and E. Sedlák, Photoinduced damage of AsLOV2 domain is accompanied by increased singlet oxygen production due to flavin dissociation, Sci. Rep. 10 (2020) 4119.
  2. M. Petrenčaková, R. Varhač, T. Kožár, M. Nemergut, D. Jancura, M.S. Schwer and E. Sedlák. Conformational properties of LOV2 domain and its C450A variant within broad pH region. Biophys. Chem. 259 (2020) 106337.
  3. J.V. Schaefer, E. Sedlak, F. Kast, M. Nemergut and A. Pluckthun, Modification of the kinetic stability of immunoglobulin G by solvent additives, MABS 10 (2018), 607-623.
  4. G. Žoldák, D. Jancura and E. Sedlák, The fluorescence intensities ratio is not a reliable parameter for evaluation of protein unfolding transitions, Protein Science 26 (2017) 1236-1239.

Moderné didaktické metódy výučby

  1. M. Kekule et al., Inquiry-based Science Education and Getting Immediate Students´ Feedback about Their Motivation, In: Scientia in educatione. – ISSN 1804-7106. – Roč. 8, sp.isue (2017) 207-216.
  2. K. Krišková, M. Kireš, The development and pilot testing of the measurement tool of skills level development in the lower secondary physics classroom, In: The role of Laboratory Work in Improving Physics Teaching and Learning. – Cham: Springernature, 2018. – ISBN 9783319961835. – S. 217-227.
  3. V. Timková, Z. Ješková, Computer modelling in Physics Teaching, In: The role of Laboratory Work in Improving Physics Teaching and Learning. – Cham : Springernature, 2018. – ISBN 9783319961835. – S. 121-130.3.
  4. E. Paňková, J. Hanč, Teaching Feynman’s quantum physics at secondary schools using current digital technologies. In: DIDFYZ 2019 : Formation of the Natural Science Image of the World in the 21st Century. – Melville : AIP Publishing, 2019. – ISBN 9780735418974. – S. 1-1.
  5. M. Kireš et al., Key innovation concepts of STEM education driven by IT Academy project. In: ICETA 2019 : 17th IEEE International conference on emerging elearning technologies and applications : Information and communication technologies in learning. Starý Smokovec, Slovakia. November 21-22, 2019 : proceedings. – Denver: Institute of Electrical and Electronics Engineers, 2019. – ISBN 9781728149660. – S. 378-382.

Efektívnosť využitia didaktických prostriedkov vo vzdelávaní

  1. M. Kireš, M. Ganajová, I. Sotáková, The Influence of Formative Assessment on the Development of Students ́ Scientific Skills in Natural Science Teaching at Lower Secondary Schools. In: ICERI 2019 : conference proceedings : 12th International conference of education, research and innovation : Seville (Spain) 11-13 November 2019. – Valencia: IATED, 2019. – ISBN 23401095. – S. 6932-6940
  2. Z. Ješková, M. Kireš, Modeling activities in the framework of an interdisciplinary subject Informatics in science and mathematics. In: DIDFYZ 2019 : Formation of the Natural Science Image of the World in the 21st Century. – Melville : AIP Publishing, 2019. – ISBN 9780735418974. – S. 1-9.
  3. E. Paňková, J. Hanč, Flipped learning and interactive methods with smartphones in modern physics at secondary schools. In: DIDFYZ 2019: Formation of the Natural Science Image of the World in the 21st Century. – Melville : AIP Publishing, 2019. – ISBN 9780735418974. – S. 1-1.

Popularizácia fyziky a práca s talentovanou mládežou

  1. M. Kireš, Let’s repair the broken Galileo Thermometer, In: Center for Educational Policy Studies Journal. – ISSN 1855-9719. – Vol. 8, no. 1 (2018), s. 77-95.
  2. A. Kazachkov, M. Kireš,  A stack of cards rebuilt with calculus, In: Physics Education. – ISSN 0031-9120. – vol. 52, no. 4 (2017), art.no. 045019.
  3. M. Bilišňanská, M. Kireš, Balancing act: the physics of levers, In: Science in School: The European journal for science teachers. – ISSN 1818-0353. – No. 42 (2017), s. 49-54.
  4. K. Krišková, V. Timková, How to delude your senses, In: Physics Education. – ISSN 0031-9120. – vol. 52, no. 1 (2017), art.no. 013003.
  5. V. Timková, Z. Ješková, How Magnus bends the flying ball – experimenting and modeling, The Physics Teacher 55 (2017) 112.

Študuj na UPJŠ